\begin{frame}{Bitcoin Mining Market Structure} \begin{block}{Revenue} \begin{equation} R_{i,t}=\eta_{t}\cdot\frac{q_{i}}{Q^{-i}_{t}} \end{equation} \end{block} Where \(R_{i,t}\) is the revenue of miner \(i\in I\), at time t. \(q_{i}\) is the hash power of a miner i, and \(Q^{-i}_{t}\) is the hash of all other miners. The miner reward is \(\eta\) \begin{block}{Revenue change from t to t+1} \begin{align*} % R_{i,t+1}-R_{i,t}=\eta \cdot\frac{q_{i}}{Q^{-i}_{t+1}-Q^{-i}_{t}} % \\ \%\Delta R=\%\Delta P_{btc}(1-\epsilon) \end{align*} \end{block} If the Bitcoin price elasticity of hash \(\epsilon\) is greater than one (elastic), than a decrease in price will \alert{increase profits} for the low marginal cost producers, like the miners using flared gas. \end{frame}