\documentclass{beamer} \usepackage[style=apa,natbib=true]{biblatex} \usepackage{cleveref} \bibliography{Supporting/Beamer.bib} \setbeamercovered{transparent=25} %Information to be included in the title page: \title{Should We Always Aim for Higher Quality?} \subtitle{The Impact of the Groundwater Restoration Framework in In-Situ Uranium Recovery in Wyoming} \author{Alexander Gebben} \institute{Center for Business and Economic Analysis, University of Wyoming} \date{2024} \begin{document} %%%%%%%%%%%%%%%%%%%% \frame{\titlepage} %%%%%%%%%%%%%%%%%%%%%% \begin{frame} \huge \centering What is In Situ Mining? \end{frame} %%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Ranger Open Pit Uranium Mine, Australia} \includegraphics[width=\textwidth]{Images/Ranger_Uranium_Mine_01.jpg} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Smith Ranch-Highland ISL Uranium Mine, Wyoming} \includegraphics[width=\textwidth]{Images/Smith-Ranch-Highland.jpg}\footnote{\tiny Image used with permission from Cameco Corporation} \end{frame} %%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{In Situ Operation} \includegraphics[width=\textwidth]{Images/Process_Facility.png} \end{frame} %%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Uranium Extraction Wells} \includegraphics[width=\textwidth]{Images/Recovery_Well.png} \end{frame} %%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{In Situ Site Boundaries} \includegraphics[width=\textwidth]{Images/Boundry.png} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%% \setbeamercovered{transparent}%still covered={\opaqueness<1->{0}},again covered={\opaqueness<1->{10}}} \begin{frame} \frametitle{Regulation of In Situ Mines: Aquifer Exemption} \only<1>{\onslide<1>\begin{quote}``Any underground injection, except into a well authorized by rule or except as authorized by permit issued under the UIC program, is prohibited.'' \tiny-- 40 CFR \(\textsection\) 144.11 \end{quote}} \only<2->{\onslide<2->\textbf{To start a in situ mine the aquifer must be exempt by the EPA}\footnote{\tiny \citep{cheung2014,usepa2015a}} \begin{enumerate} \onslide<3->\item{Must not currently serve as a source of drinking water} \onslide<3->\item{Will not serve as a source of drinking water in the future} \begin{itemize} \onslide<4->\item{Already highly contaminated (TDS above 10,000 \(\frac{mg}{L}\))} \onslide<4->\item{Low population: unlikely to use the groundwater in the foreseeable future.} \end{itemize} \end{enumerate} } \end{frame} \begin{frame} \frametitle{Regulation of In Situ Mines: Aquifer Restoration} \only<1>{\begin{quote}``The primary goal of a restoration program is to return the water quality within the exploited production zone and any affected aquifers to pre-operational (baseline) water quality conditionsd''\tiny--NRC Licensing Standards \citep{luthiger2003}\end{quote}} \only<2->{\textbf{Aquifers must be restored to a pre-mining state} \begin{enumerate} \onslide<2->\item{Show all constituents (uranium, selenium, TDS ect.) are returned to original levels} \onslide<3->\item{Sample groundwater before starting} \onslide<4->\item{Sweep the aquifer after completion} \begin{itemize} \onslide<4->\item{Filter the water and use for irrigation} \onslide<4->\item{Inject the water into deeper formation} \end{itemize} \onslide<5->\item{Filter the water that flows in to replace the mined water} \onslide<6->\item{Monitor acidity and constituent in water} \end{enumerate} % \onslide<7->\textbf{Once exempt a aquifer can never be used as a public drinking water source.} } \end{frame} \begin{frame} \frametitle{Regulation of In Situ Mines: Economic Consequences} \only<1>{Mines are required to spend more resources to clean aquifers with a low economic value} \onslide<2-3>\textbf{Aquifer Exemption Rule} \begin{enumerate} \onslide<2-3>\item{Removes reservoirs from uranium production} \onslide<2-3>\item{Uranium can only be extracted from low value aquifers} \onslide<2-3>\item{Removes reservoirs from use as a drinking water source (even after restoration)} \onslide<2-3>\item{Does not consider opportunity costs} \begin{itemize} \onslide<3>\item{Is the aquifer best used as a mine or for drinking water?} \onslide<3>\item{Are there substitute sources of drinking water?} \onslide<3>\item{What is the expected value of the groundwater?} \end{itemize} \end{enumerate} \onslide<4->\textbf{Aquifer Restoration Rules} \begin{enumerate} \onslide<4->\item{Resources must be spent to restore aquifers not used for drinking water} \onslide<4->\item{Marginal abatement costs higher than marginal benefits } \end{enumerate} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \huge \centering Are current restoration rules efficient? \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{In Situ Operations Externalities} \begin{itemize} \item{\footnotesize If a mine is \emph{not restored}, pollutants move \(\approx\) 500 feet in 100 years.} \end{itemize} \begin{columns} \begin{column}{0.5\textwidth} \begin{figure}[ht] \includegraphics[width=\textwidth]{Images/Pollution1.png} \caption{\footnotesize Intial TDS (\(\frac{650 mg}{L}\))} \end{figure} \end{column} \begin{column}{0.478\textwidth} \begin{figure}[ht] \includegraphics[width=\textwidth]{Images/Pollution2.png} \caption{\footnotesize 100 Years later:TDS \(\frac{400 mg}{L}\)} \end{figure} \end{column} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Comparing Restoration Benefits and Costs} \only<1>{ Areas with high TDS (in red) have a \emph{low cost} of restoration. \includegraphics[width=0.9\textwidth]{Images/TDS_Wyoming.jpeg}\footnote{\tiny Data used comes from \citep{eia2020a,wyomingstategeologicalsurvey2024}. TDS is interpolated with regional smoothing.} } \only<2>{ Uranium resources are typically in rural parts of the State. Low land prices in these areas suggest mining is the highest values use. \centering \includegraphics[width=0.6\textwidth]{Images/Price_Histogram.png}} \only<3-4>{ \textbf{Results} \onslide<3>{Operating plans of five mines were reviewed. \begin{itemize} \item{Adds \$4.3 dollar's per pound produced.} \begin{itemize} \item{Cost vary by geology. \$1.6-\$10.84 per pound} \end{itemize} \item{Average of \$15 million per project} \item{A discount of 10\% was assumed which reduces industry estimates of cost} \end{itemize}} \onslide<4>{ Wyoming land values over a uranium resource. \begin{itemize} \item{Weighted average price of \$239 per acre} \item{Average mine lease area of 13,750 acres} \item{Total expected value of land of \$3.29 million dollars} \end{itemize} } } \only<5>{Average restoration costs are \emph{4.5 times larger} than the value of land for a typical in situ mine. \newline Even under the strongest assumptions it is not plausible that the restoration costs are efficient. \newline Hedonic models predict land value changes between 0.3\% and 15\% of total value\footnote{\tiny\citep{guignet2015,mukherjee2014}}. } \only<6>{ Other factors suggest the actual cost is nearly zero. \begin{itemize} \item{Most mines are on ranches, not farms or urban areas} \item{High groundwater quality provides alternative sources} \item{Water is restored naturally over time} \item{Home filtration may be more cost effective} \end{itemize} } \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \huge \centering What are the market dynamics of uranium production? \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Mining Model} \only<1>{ \begin{equation} \label{EQPROFITALL} \tiny \pi=\sum_{t=0}^{T}\left[\left(P_{ur} \cdot \left(W_{t}^{\alpha}-W_{t-1}^{\alpha}\right)-\left(C_{Drill}+C_{Res}\right)\cdot\left(W_{t}-W_{t-1}\right)\right)\frac{1}{(1+r)^t}\right]-C_{Facility} \end{equation} Subject to: \(\beta\cdot C_{Facility}\ge W_{t}^{\alpha}-W_{t-1}^{\alpha}\), and \(\gamma_{Drill}\ge W_{t}^{\alpha}-W_{t-1}^{\alpha}\) \newline \normalsize Where \(P_{ur}\) is the price of uranium, \(W_{t}\) is the total number of wells drilled in a aquifer at time \emph{t}, \(\alpha\) is a constant between zero and one representing the decline in ore grade across the reservoir, \(C_{Drill}\) is the cost to drill a well, \(C_{Res}\) is the cost to restore the water affected by a well, \emph{r} is the yearly discount rate of the firm, \(C_{Facility}\) is the investment cost in the uranium processing facility, \(\beta\) is a factor that converts the dollars spent to construct a uranium processing facility to output capacity, and \(\gamma_{Drill}\) is the maximum available drilling capacity in the region. } \only<2>{ \textbf{Arp's exponential Decline Curve} \begin{equation*}q=q_{i}\cdot e^{-D\cdot T}\end{equation*} Where \emph{q} is the production at time \emph{t}, \(q_{i}\) is starting production rate, and \emph{D} is some constant between zero and one.\citep{mccain2017} \begin{itemize} \item{Production choices of a well are fixed after they are drilled.\citep{anderson2018}.} \end{itemize} } \only<3>{ \begin{equation} \label{EQPROFIT} \pi_{w}=\int_{t=0}^{T}\left[ \left(P_{ur}\cdot q_{i}\cdot e^{-Dt}-C_{op}\right)e^{-rt}\right] \,dt-C_{Drill}-C_{Res}\cdot e^{-rT} \end{equation} Where \emph{D} is the decline rate of the well, and r is the instantaneous private discount rate. Since the terminal time \emph{T} is a choice variable the optimal time to operate the well can be found with: } \only<4>{ \begin{equation} \label{EQINFWELL} T^{\star}=\frac{\ln(P_{ur})+\ln(q_{i})-\ln(C_{op}-r C_{Res})}{D} \end{equation} \begin{equation} \label{TIMEDIFF} \Delta T^{\star}=\frac{\ln(C_{op}-r C_{Res})-\ln(C_{op})}{D} \end{equation} } \end{frame} \begin{frame} \frametitle{Other Inefficiencies} \begin{equation} \Delta T^{\star}=\frac{\ln(C_{op}-r C_{Res})-\ln(C_{op})}{D} \end{equation} \begin{itemize} \item{As \(r C_{Res}\) increases wells are operated longer to avoid retirements costs.} \item{If \(r C_{Res}> C_{op}\) the well is never shut down.} \item{Unintended consequence of increasing well operating time.} \end{itemize} \end{frame} \begin{frame} \frametitle{Uranium Supply} \begin{figure} \includegraphics[width=\textwidth]{Images/SUPPLY_PLOT.jpeg} \end{figure} \end{frame} %%%%%%%%%%%%%%%% \section{Econometric Model} \begin{frame} \frametitle{Econometric Model} From \cref{EQPROFITALL} expansion of production is defined by a exponential conststant. \begin{itemize} \item{A log-log form is used.} \end{itemize} From eq. (2) there is a time delay in production, and capital is sunk when prices decrease \begin{itemize} \item{Production lags are used} \end{itemize} Additional control included for inventories of uranium at power plants. Capturing future price expectations.\footnote{Data source of \citep{eia1993,eia1994,eia1995,eia1996,eia1997,eia1998,eia1999,eia2000,eia2001,eia2002,eia2003,eia2004,eia2005a,eia2006a,eia2007a,eia2008a,eia2009a,eia2010b,eia2011a,eia2012a,eia2013,eia2014a,eia2015b,eia2016a,eia2017c,eia2018a,eia2019a,eia2020b,eia2021a,eia2022b,eia2023b,eia2024}} A time trend is included to acount for average ore grade decline. \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Results} \centering \includegraphics[width=0.8\textwidth]{Images/UR_Supply_Reg_Table.png} \end{frame} %%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Price Shock Over Time} \includegraphics[width=\textwidth]{Images/Price_Shock.jpeg} \onslide<2>{A 0.66 elasticity translates to a 3.1\% reduction in uranium production, if the regulation add \$4.3 dollars per poind of uranium. } \end{frame} %%%%%%%%%%% \section{Reference} \begin{frame} \frametitle{Reference} \tiny \printbibliography \end{frame} \end{document}