\section{Derivation of \cref{EQINFWELL}} \begin{equation*} \pi_{w}=\int_{t=0}^{T}\left[ \left(P_{ur}\cdot q_{i}\cdot e^{-Dt}-C_{op}\right)e^{-rt}\right] \,dt-C_{Drill}-C_{Res}\cdot e^{-rT} \ \end{equation*} \begin{equation*} \frac{d \pi_{w}}{dT}= \left(P_{ur}\cdot q_{i}-C_{op}e^{-rT}+r\cdot C_{Res}\right)e^{-rT}=0 \ \end{equation*} \begin{equation*} P_{ur}\cdot q_{i}\cdot e^{-DT}=C_{op}-r\cdot C_{Res} \end{equation*} \begin{equation*} e^{-DT}=\frac{C_{op}-r\cdot C_{Res}}{ P_{ur}\cdot q_{i}} \end{equation*} \begin{equation*} -DT=ln(\frac{C_{op}-r\cdot C_{Res}}{ P_{ur}\cdot q_{i}}) \end{equation*} \begin{equation*} -DT=\ln(C_{op}-r\cdot C_{Res})-\ln( P_{ur}\cdot q_{i}) \end{equation*} \begin{equation*} -DT=\ln(C_{op}-r\cdot C_{Res})-\left(\ln( P_{ur})+\ln(\cdot q_{i})\right) \end{equation*} \begin{equation*} -DT=\ln(C_{op}-r\cdot C_{Res})-\ln( P_{ur})-\ln(\cdot q_{i}) \end{equation*} \begin{equation*} T^{\star}=\frac{\ln(P_{ur})+\ln(q_{i})-\ln(C_{op}-r C_{Res})}{D} \end{equation*}