WEAI_Confrence_In_Situ_Uranium/Beamer/In_Situ_Presentation.tex
2024-06-30 20:58:35 -06:00

215 lines
8.8 KiB
TeX

\documentclass{beamer}
\usepackage[style=apa,natbib=true]{biblatex}
\bibliography{Supporting/Beamer.bib}
\setbeamercovered{transparent=25}
%Information to be included in the title page:
\title{Should We Always Aim for Higher Quality?}
\subtitle{The Impact of the Groundwater Restoration Framework in In-Situ Uranium Recovery in Wyoming}
\author{Alexander Gebben}
\institute{Center for Business and Economic Analysis, University of Wyoming}
\date{2024}
\begin{document}
%%%%%%%%%%%%%%%%%%%%
\frame{\titlepage}
%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Ranger Open Pit Uranium Mine, Australia}
\includegraphics[width=\textwidth]{Images/Ranger_Uranium_Mine_01.jpg}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Smith Ranch-Highland ISL Uranium Mine, Wyoming}
\includegraphics[width=\textwidth]{Images/Smith-Ranch-Highland.jpg}\footnote{\tiny Image used with permission from Cameco Corporation}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{In Situ Operation}
\includegraphics[width=\textwidth]{Images/Process_Facility.png}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Uranium Extraction Wells}
\includegraphics[width=\textwidth]{Images/Recovery_Well.png}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{In Situ Site Boundaries}
\includegraphics[width=\textwidth]{Images/Boundry.png}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Do In Situ Operations Create Externalities?}
\begin{itemize}
\item{\footnotesize If a mine is \emph{not restored}, pollutants move \(\approx\) 500 feet in 100 years.}
\end{itemize}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{figure}[ht]
\includegraphics[width=\textwidth]{Images/Pollution1.png}
\caption{\footnotesize Intial TDS (\(\frac{650 mg}{L}\))}
\end{figure}
\end{column}
\begin{column}{0.478\textwidth}
\begin{figure}[ht]
\includegraphics[width=\textwidth]{Images/Pollution2.png}
\caption{\footnotesize 100 Years later:TDS \(\frac{400 mg}{L}\)}
\end{figure}
\end{column}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setbeamercovered{transparent}%still covered={\opaqueness<1->{0}},again covered={\opaqueness<1->{10}}}
\begin{frame}
\frametitle{Regulation of In Situ Mines: Aquifer Exemption}
\only<1>{\onslide<1>\begin{quote}``Any underground injection, except into a well authorized by rule or except as authorized by permit issued under the UIC program, is prohibited.'' \tiny-- 40 CFR \(\textsection\) 144.11
\end{quote}}
\only<2->{\onslide<2->\textbf{To start a in situ mine the aquifer must be exempt by the EPA}\footnote{\tiny \citep{cheung2014,usepa2015a}}
\begin{enumerate}
\onslide<3->\item{Must not currently serve as a source of drinking water}
\onslide<3->\item{Will not serve as a source of drinking water in the future}
\begin{itemize}
\onslide<4->\item{Already highly contaminated (TDS above 10,000 \(\frac{mg}{L}\))}
\onslide<4->\item{Low population: unlikely to use the groundwater in the foreseeable future.}
\end{itemize}
\end{enumerate}
}
\end{frame}
\begin{frame}
\frametitle{Regulation of In Situ Mines: Aquifer Restoration}
\only<1>{\begin{quote}``The primary goal of a restoration program is to return the water quality within the exploited production zone and any affected aquifers to pre-operational (baseline) water quality conditionsd''\tiny--NRC Licensing Standards \citep{luthiger2003}\end{quote}}
\only<2->{\textbf{Aquifers must be restored to a pre-mining state}
\begin{enumerate}
\onslide<2->\item{Show all constituents (uranium, selenium, TDS ect.) are returned to original levels}
\onslide<3->\item{Sample groundwater before starting}
\onslide<4->\item{Sweep the aquifer after completion}
\begin{itemize}
\onslide<4->\item{Filter the water and use for irrigation}
\onslide<4->\item{Inject the water into deeper formation}
\end{itemize}
\onslide<5->\item{Filter the water that flows in to replace the mined water}
\onslide<6->\item{Monitor acidity and constituent in water}
\end{enumerate}
% \onslide<7->\textbf{Once exempt a aquifer can never be used as a public drinking water source.}
}
\end{frame}
\begin{frame}
\frametitle{Regulation of In Situ Mines: Economic Consequences}
\only<1>{Mines are required to spend more resources to clean aquifers with a low economic value}
\onslide<2-3>\textbf{Aquifer Exemption Rule}
\begin{enumerate}
\onslide<2-3>\item{Removes reservoirs from uranium production}
\onslide<2-3>\item{Uranium can only be extracted from low value aquifers}
\onslide<2-3>\item{Removes reservoirs from use as a drinking water source (even after restoration)}
\onslide<2-3>\item{Does not consider opportunity costs}
\begin{itemize}
\onslide<3>\item{Is the aquifer best used as a mine or for drinking water?}
\onslide<3>\item{Are there substitute sources of drinking water?}
\onslide<3>\item{What is the expected value of the groundwater?}
\end{itemize}
\end{enumerate}
\onslide<4->\textbf{Aquifer Restoration Rules}
\begin{enumerate}
\onslide<4->\item{Resources must be spent to restore aquifers not used for drinking water}
\onslide<4->\item{Marginal abatement costs higher than marginal benefits }
\end{enumerate}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Comparing Restoration Benefits and Costs}
\only<1>{
Areas with high TDS (in red) have a \emph{low cost} of restoration.
\includegraphics[width=0.9\textwidth]{Images/TDS_Wyoming.jpeg}\footnote{\tiny Data used comes from \citep{eia2020a,wyomingstategeologicalsurvey2024}. TDS is interpolated with regional smoothing.}
}
\only<2>{
Uranium resources are typically in rural parts of the State.
Low land prices in these areas suggest mining is the highest values use.
\centering
\includegraphics[width=0.6\textwidth]{Images/Price_Histogram.png}}
\only<3-4>{
\textbf{Results}
\onslide<3>{Operating plans of five mines were reviewed.
\begin{itemize}
\item{Adds \$4.3 dollar's per pound produced.}
\begin{itemize}
\item{Cost vary by geology. \$1.6-\$10.84 per pound}
\end{itemize}
\item{Average of \$15 million per project}
\item{A discount of 10\% was assumed which reduces industry estimates of cost}
\end{itemize}}
\onslide<4>{
Wyoming land values over a uranium resource.
\begin{itemize}
\item{Weighted average price of \$239 per acre}
\item{Average mine lease area of 13,750 acres}
\item{Total expected value of land of \$3.29 million dollars}
\end{itemize}
}
}
\only<5>{Average restoration costs are \emph{4.5 times larger} than the value of land for a typical in situ mine.
\newline
Even under the strongest assumptions it is not plausible that the restoration costs are efficient.
\newline
Hedonic models predict land value changes between 0.3\% and 15\% of total value\footnote{\tiny\citep{guignet2015,mukherjee2014}}.
}
\only<6>{
Other factors suggest the actual cost is nearly zero.
\begin{itemize}
\item{Most mines are on ranches, not farms or urban areas}
\item{High groundwater quality provides alternative sources}
\item{Water is restored naturally over time}
\item{Home filtration may be more cost effective}
\end{itemize}
}
\end{frame}
\begin{frame}
\frametitle{Mining Model }
\only<1>{
\tiny
\begin{equation}
\label{EQPROFITALL}
\pi=\sum_{t=0}^{T}\left[\left( P_{ur} \cdot \left(W_{t}^{\alpha}-W_{t-1}^{\alpha}\right)-\left(C_{Drill}+C_{Res}\right)\cdot\left(W_{t}-W_{t-1}\right)\right)\frac{1}{(1+r)^t}\right]-C_{Facility}
\end{equation}
Subject to: \(\beta\cdot C_{Facility}\ge W_{t}^{\alpha}-W_{t-1}^{\alpha}\), and \(\gamma_{Drill}\ge W_{t}^{\alpha}-W_{t-1}^{\alpha}\)
\newline
\normalsize
Where \(P_{ur}\) is the price of uranium, \(W_{t}\) is the total number of wells drilled in a aquifer at time \emph{t}, \(\alpha\) is a constant between zero and one representing the decline in ore grade across the reservoir, \(C_{Drill}\) is the cost to drill a well, \(C_{Res}\) is the cost to restore the water affected by a well, \emph{r} is the yearly discount rate of the firm, \(C_{Facility}\) is the investment cost in the uranium processing facility, \(\beta\) is a factor that converts the dollars spent to construct a uranium processing facility to output capacity, and \(\gamma_{Drill}\) is the maximum available drilling capacity in the region.
}
\only<2>{
\begin{equation}
\label{EQPROFIT}
\pi_{w}=\int_{t=0}^{T}\left[ \left(P_{ur}\cdot q_{i}\cdot e^{-Dt}-C_{op}\right)e^{-rt}\right] \,dt-C_{Drill}-C_{Res}\cdot e^{-rT} \
\end{equation}
Where \emph{D} is the decline rate of the well, and r is the instantaneous private discount rate. Since the terminal time \emph{T} is a choice variable the optimal time to operate the well can be found with:
}
\only<3>{
\begin{equation}
\label{EQINFWELL}
T^{\star}=\frac{\ln(P_{ur})+\ln(q_{i})-\ln(C_{op}-r C_{Res})}{D}
\end{equation}
\begin{equation}
\label{TIMEDIFF}
\Delta T^{\star}=\frac{\ln(C_{op}-r C_{Res})-\ln(C_{op})}{D}
\end{equation}
}
\end{frame}
\end{document}