Updated graphs
This commit is contained in:
parent
231ea31899
commit
8c2e16f3e7
@ -1,17 +1,17 @@
|
|||||||
library(tidyverse)
|
library(tidyverse)
|
||||||
DATA_PATH <- "./Raw_Output/"
|
DATA_PATH <- "./Raw_Output/"
|
||||||
source("Scripts/Data_Proc_Script.r")
|
source("Scripts/Data_Proc_Script.r")
|
||||||
DAT <- GET_ALL_DATA(DATA_PATH)
|
DAT <- GET_ALL_DATA(DATA_PATH)
|
||||||
|
|
||||||
|
|
||||||
COUNTY_DATA <-DAT %>% group_by(Year,Major_Event,County_Name) %>% summarize(Employment =sum(Employment ),Labor_Income =sum(Labor_Income),Value_Added=sum(Value_Added),Output=sum(Output),Subcounty=sum(Subcounty),Special=sum(Special),County=sum(County),State=sum(State),STATE_TOTAL=sum(STATE_TOTAL),Federal=sum(Federal))
|
COUNTY_DATA <-DAT %>% group_by(Year,Major_Event,County_Name) %>% summarize(Employment =sum(Employment ),Labor_Income =sum(Labor_Income),Value_Added=sum(Value_Added),Output=sum(Output),Subcounty=sum(Subcounty),Special=sum(Special),County=sum(County),State=sum(State),STATE_TOTAL=sum(STATE_TOTAL),Federal=sum(Federal))
|
||||||
|
|
||||||
STATE_EVENT_DATA <- DAT %>% group_by(Year,Major_Event) %>% summarize(Employment =sum(Employment ),Labor_Income =sum(Labor_Income),Value_Added=sum(Value_Added),Output=sum(Output),Subcounty=sum(Subcounty),Special=sum(Special),County=sum(County),State=sum(State),STATE_TOTAL=sum(STATE_TOTAL),Federal=sum(Federal))
|
STATE_EVENT_DATA <- DAT %>% group_by(Year,Major_Event) %>% summarize(Employment =sum(Employment ),Labor_Income =sum(Labor_Income),Value_Added=sum(Value_Added),Output=sum(Output),Subcounty=sum(Subcounty),Special=sum(Special),County=sum(County),State=sum(State),STATE_TOTAL=sum(STATE_TOTAL),Federal=sum(Federal))
|
||||||
|
|
||||||
STATE_TYPE_DATA <- DAT %>% group_by(Year,Impact) %>% summarize(Employment =sum(Employment ),Labor_Income =sum(Labor_Income),Value_Added=sum(Value_Added),Output=sum(Output),Subcounty=sum(Subcounty),Special=sum(Special),County=sum(County),State=sum(State),STATE_TOTAL=sum(STATE_TOTAL),Federal=sum(Federal))
|
STATE_TYPE_DATA <- DAT %>% group_by(Year,Impact) %>% summarize(Employment =sum(Employment ),Labor_Income =sum(Labor_Income),Value_Added=sum(Value_Added),Output=sum(Output),Subcounty=sum(Subcounty),Special=sum(Special),County=sum(County),State=sum(State),STATE_TOTAL=sum(STATE_TOTAL),Federal=sum(Federal))
|
||||||
|
|
||||||
ggplot(aes(x=Year,y=Employment,group-Impact,fill=Impact),data=STATE_TYPE_DATA)+geom_bar(stat = "identity")
|
ggplot(aes(x=Year,y=Employment,group-Impact,fill=Impact),data=STATE_TYPE_DATA)+geom_bar(stat = "identity")
|
||||||
ggplot(aes(x=Year,y=STATE_TOTAL/10^6,group-Impact,fill=Impact),data=STATE_TYPE_DATA)+geom_bar(stat = "identity")
|
ggplot(aes(x=Year,y=STATE_TOTAL/10^6,group=Impact,fill=Impact),data=STATE_TYPE_DATA)+geom_bar(stat = "identity")+ylab("Wyoming Taxes (Million USD)")
|
||||||
|
|
||||||
ggplot(aes(x=Year,y=Employment,group-Major_Event,fill=Major_Event),data=STATE_EVENT_DATA)+geom_bar(stat = "identity") + scale_fill_discrete(name = "Economic Event")
|
ggplot(aes(x=Year,y=Employment,group-Major_Event,fill=Major_Event),data=STATE_EVENT_DATA)+geom_bar(stat = "identity") + scale_fill_discrete(name = "Economic Event")
|
||||||
|
ggplot(aes(x=Year,y=STATE_TOTAL/10^6,group=Major_Event,fill=Major_Event),data=STATE_EVENT_DATA)+geom_bar(stat = "identity") + scale_fill_discrete(name = "Economic Event")+ylab("Wyoming Taxes (Million USD)")
|
||||||
@ -19,7 +19,7 @@ GET_YEAR_DATA <- function(C_YEAR,DATA_PATH){
|
|||||||
DAT[grep('Skid',DAT$Event),"Group"] <- "Skid"
|
DAT[grep('Skid',DAT$Event),"Group"] <- "Skid"
|
||||||
DAT[grep('Purchase',DAT$Event),"Group"] <- "Beet Purchase"
|
DAT[grep('Purchase',DAT$Event),"Group"] <- "Beet Purchase"
|
||||||
DAT[grep('Truck',DAT$Event),"Group"] <- "Transportation"
|
DAT[grep('Truck',DAT$Event),"Group"] <- "Transportation"
|
||||||
DAT[DAT$Event=="Gas Production (Campbell)","Group"] <- "Gas Produciton"
|
DAT[DAT$Event=="Gas Production (Campbell)","Group"] <- "Gas Production"
|
||||||
DAT[is.na(DAT$Group),"Group"] <- "Processing Facilities"
|
DAT[is.na(DAT$Group),"Group"] <- "Processing Facilities"
|
||||||
#Remove the direct transportation effects induced by by beet purchases, by adding in a negative impact of rail and truck equal to the direct effect found in the first run.
|
#Remove the direct transportation effects induced by by beet purchases, by adding in a negative impact of rail and truck equal to the direct effect found in the first run.
|
||||||
DAT[grep('Adjustment',DAT$Event),"Group"] <- "Beet Purchase"
|
DAT[grep('Adjustment',DAT$Event),"Group"] <- "Beet Purchase"
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user