diff --git a/Fix_Gas_Production.r b/Fix_Gas_Production.r deleted file mode 100644 index 8a90595..0000000 --- a/Fix_Gas_Production.r +++ /dev/null @@ -1,61 +0,0 @@ -library(tidyverse) -#R script to quickly find IMPLAN inputs or adjustment factors -GET_INPUTS_GAS <- function(YEAR){ - FILES <- list.files("./Raw_Output/Detailed_Economic_Indicators/Prelim-Run") - FILE <- paste0("./Raw_Output/Detailed_Economic_Indicators/Prelim-Run/",FILES[grep(paste0("-",YEAR),FILES)]) - #Dollar value added to the RNG in addition to the main production - RNG_ADD_YEARS <- c(0,380102,3097001,5943721,11224037,18050255,18050255) - RNG_ADD <- RNG_ADD_YEARS[YEAR-2023] - DF <- read_csv(FILE) %>% filter(ImpactType=="Direct",EventName=="Gas Production (Campbell)") - DF <- DF %>% mutate(IntermediateInputs=Output-EmployeeCompensation-ProprietorIncome-OtherPropertyIncome-TaxesOnProductionAndImports)%>% select(WageAndSalaryEmployment,EmployeeCompensation,Output,ProprietorEmployment,OtherPropertyIncome,Employment,IntermediateInputs)%>% mutate(Output=Output+RNG_ADD) - return(DF) -} -#Find the input values for the beet factories -GET_INPUTS_BEET <- function(YEAR,OP_COST=75){ - MAX_WASH_EMP <- 8 - MAX_GOSHEN_EMP <-15 - GOSHEN_WAGE <- 53007.10 - WASH_WAGE <- 71017.25 - - WASH_PROD <- c(0,0,0,35000,37500,50000,50000) - GOSHEN_PROD <- c(0,0,0,52500,112500,150000,150000) - - GOSHEN_OP_COST <- OP_COST*GOSHEN_PROD - WASH_OP_COST <- OP_COST*WASH_PROD - - GOSHEN_TAX_CRED <- GOSHEN_PROD*0.62*90 - WASH_TAX_CRED <- WASH_PROD*0.62*90 - - WASH_EMP <- MAX_WASH_EMP*(WASH_PROD)/max(WASH_PROD) - GOSHEN_EMP <- MAX_GOSHEN_EMP*(GOSHEN_PROD)/max(GOSHEN_PROD) - TOPI <- GOSHEN_EMP*0 - OTH_PROP <- GOSHEN_EMP*0 - - GOSHEN_COMP <- GOSHEN_WAGE*GOSHEN_EMP - WASH_COMP <- WASH_WAGE*WASH_EMP - - WASH_RETURN <- WASH_TAX_CRED-WASH_COMP-WASH_OP_COST - GOSHEN_RETURN <- GOSHEN_TAX_CRED-GOSHEN_COMP-GOSHEN_OP_COST - RES <- rbind(as.numeric(cbind(WASH_EMP,WASH_COMP,WASH_RETURN,TOPI,OTH_PROP,WASH_OP_COST)[YEAR-2023,]),as.numeric(cbind(GOSHEN_EMP,GOSHEN_COMP,GOSHEN_RETURN,TOPI,OTH_PROP,GOSHEN_OP_COST)[YEAR-2023,])) %>% as_tibble - colnames(RES) <- c("Wage_Emp","Compensation","Proprietor_Income","TOPI","OTHER_PROP","Inter_Inputs") - RES$County <- c("Washakie","Goshen") - RES <- RES %>% select(County,everything()) - - return(RES) -} - - -#Pull the truck and rail transportation induced, to remove it from IMPLAN results. Those costs are explicitly modeled. -GET_ADJ <- function(YEAR){ - FILES <- list.files("./Raw_Output/Detailed_Economic_Indicators/Prelim-Run/") - FILE <- paste0("./Raw_Output/Detailed_Economic_Indicators/Prelim-Run/",FILES[grep(paste0("-",YEAR),FILES)]) - DF <- read_csv(FILE) %>% filter(ImpactType=="Direct",IndustryCode %in% c(397,399),TagName=="beet purchase") - - DF$County <- gsub(" County, WY \\(2023\\)","",DF$DestinationRegion ) - DF <- DF %>% select(County, Industry=IndustryDescription,Output) %>% mutate(Output=-Output) - return(DF) -} - -GET_INPUTS_GAS(2028) -GET_INPUTS_BEET(2029,10) -GET_ADJ(2027) \ No newline at end of file