Finished Main Figures and Tables!
This commit is contained in:
parent
72ee18e40f
commit
edeae2a7c2
151
Data_Analysis.r
151
Data_Analysis.r
@ -1,38 +1,47 @@
|
|||||||
library(tidyverse)
|
library(tidyverse)
|
||||||
|
library("RColorBrewer")
|
||||||
|
library("knitr")
|
||||||
|
library("kableExtra")
|
||||||
|
|
||||||
|
|
||||||
|
##########Save all raw data categories
|
||||||
DATA_PATH <- "./Raw_Output/"
|
DATA_PATH <- "./Raw_Output/"
|
||||||
if(!file.exists("./Results")){dir.create("./Results")}
|
if(!file.exists("./Results")){dir.create("./Results")}
|
||||||
source("Scripts/Data_Proc_Script.r")
|
source("Scripts/Data_Proc_Script.r")
|
||||||
EVENT_DATA <- GET_EVENT_DATA(2025:2031)
|
EVENT_DATA <- GET_EVENT_DATA(2025:2031)
|
||||||
|
EVENT_DATA <- EVENT_DATA %>% mutate(VA=OPI+TOPI+EMP_COM+PROP_INC)
|
||||||
write_csv(EVENT_DATA,"./Results/Yearly_Detailed_Event_Data.csv")
|
write_csv(EVENT_DATA,"./Results/Yearly_Detailed_Event_Data.csv")
|
||||||
DATA <- GET_SUMMARY_DATA()
|
DATA <- GET_SUMMARY_DATA()
|
||||||
DATA[,c(-2:-6,-8:-10)] <- round(DATA[,c(-2:-6,-8:-10)])
|
DATA[,c(-2:-6,-8:-10)] <- round(DATA[,c(-2:-6,-8:-10)])
|
||||||
DATA[,c(3:6,8:10)] <- round(DATA[,c(3:6,8:10)],2)
|
DATA[,c(3:6,8:10)] <- round(DATA[,c(3:6,8:10)],2)
|
||||||
DATA[2,3:6] <- NA
|
DATA[2,3:6] <- NA
|
||||||
|
DATA <- DATA %>% mutate(VA=OPI+TOPI+EMP_COM+PROP_INC)
|
||||||
|
DATA <- DATA %>% filter(!is.na(MAJOR_EVENT)) %>% ungroup
|
||||||
write_csv(DATA,"./Results/Yearly_Event_Summary.csv")
|
write_csv(DATA,"./Results/Yearly_Event_Summary.csv")
|
||||||
|
DATA_ORIG <- DATA
|
||||||
|
|
||||||
DETAILED_DATA <- GET_DETAIL_ECON_DATA()
|
DETAILED_DATA <- GET_DETAIL_ECON_DATA()
|
||||||
write_csv(DETAILED_DATA,"./Results/Detailed_Economic_Indicators.csv")
|
write_csv(DETAILED_DATA,"./Results/Detailed_Economic_Indicators.csv")
|
||||||
|
|
||||||
SUMMARY_BY_YEAR <- round(GET_TOTAL_SUMMARY())
|
SUMMARY_BY_YEAR <- round(GET_TOTAL_SUMMARY())
|
||||||
write_csv(SUMMARY_BY_YEAR,"./Results/Yearly_State_Totals.csv")
|
write_csv(SUMMARY_BY_YEAR,"./Results/Yearly_State_Totals.csv")
|
||||||
|
DATA <- DATA_ORIG
|
||||||
#Advanced Summary Tables
|
#Advanced Summary Tables
|
||||||
EMP_OUTPUTS_CONSTRUCTION <- DETAILED_DATA %>% filter(YEAR<=2029) %>% group_by(IND_DESC) %>% summarize('Employment'=sum(EMP),'Income'=sum(EMP_COMP+PROP_INC),'Other Profits'=sum(OPI)) %>% arrange(desc(Employment))
|
EMP_OUTPUTS_CONSTRUCTION <- DETAILED_DATA %>% filter(YEAR<=2029) %>% rename(Industry=IND_DESC) %>% group_by(Industry) %>% summarize('Employment'=sum(EMP),'Income'=sum(EMP_COMP+PROP_INC),'Other Profits'=sum(OPI),'Value Added'=sum(EMP_COMP+PROP_INC+TOPI+OPI),'Economic Output'=sum(OUTPUT)) %>% arrange(desc(Employment))
|
||||||
TOP_20 <- EMP_OUTPUTS_CONSTRUCTION[1:20,]
|
TOP_20 <- EMP_OUTPUTS_CONSTRUCTION[1:20,]
|
||||||
OTHERS <- TOP_20[1,]
|
OTHERS <- EMP_OUTPUTS_CONSTRUCTION[1,]
|
||||||
OTHERS[1,1] <-"Other Industries"
|
OTHERS[,1] <-"Other Industries"
|
||||||
OTHERS[,-1] <- t(colSums(EMP_OUTPUTS_CONSTRUCTION[-1-20,-1] ))
|
OTHERS[,-1] <- t(colSums(EMP_OUTPUTS_CONSTRUCTION[-1-20,-1] ))
|
||||||
EMP_OUTPUTS_CONSTRUCTION <-rbind(TOP_20,OTHERS)
|
EMP_OUTPUTS_CONSTRUCTION <-rbind(TOP_20,OTHERS)
|
||||||
EMP_OUTPUTS_CONSTRUCTION[,-1] <- round(EMP_OUTPUTS_CONSTRUCTION[,-1])
|
EMP_OUTPUTS_CONSTRUCTION[,-1] <- round(EMP_OUTPUTS_CONSTRUCTION[,-1])
|
||||||
write_csv(EMP_OUTPUTS_CONSTRUCTION,"./Results/Top_20_Employmnet_During_Development_(2029).csv")
|
write_csv(EMP_OUTPUTS_CONSTRUCTION,"./Results/Top_20_Employmnet_During_Development_(2029).csv")
|
||||||
EMP_OUTPUTS_CONSTRUCTION%>% print(n=100)
|
|
||||||
|
|
||||||
COUNTY_OUTPUT_CONSTRUCTION <- EVENT_DATA %>% filter(YEAR<=2029) %>% group_by(COUNTY) %>% summarize(EMP=sum(EMP),OUTPUT=sum(OUTPUT),VALUE_ADDED=sum(EMP_COM+PROP_INC+TOPI+OPI),COUNTY_TAX=sum(SUBCOUNTY_TAX+SPECIAL_TAX+COUNTY_TAX),WY_TAX=sum(STATE_TAX)) %>% arrange(desc(EMP)) %>% print(n=200)
|
|
||||||
|
COUNTY_OUTPUT_CONSTRUCTION <- EVENT_DATA %>% filter(YEAR<=2029) %>% rename(County=COUNTY) %>% group_by(County) %>% summarize('Total Economic Output'=sum(OUTPUT),'Economic Value Added'=sum(EMP_COM+PROP_INC+TOPI+OPI),Employment=sum(EMP),'County Taxes'=sum(SUBCOUNTY_TAX+SPECIAL_TAX+COUNTY_TAX),'State Taxes'=sum(STATE_TAX)) %>% arrange(desc(Employment))
|
||||||
COUNTY_OUTPUT_CONSTRUCTION[,-1] <- round(COUNTY_OUTPUT_CONSTRUCTION[,-1])
|
COUNTY_OUTPUT_CONSTRUCTION[,-1] <- round(COUNTY_OUTPUT_CONSTRUCTION[,-1])
|
||||||
write_csv(COUNTY_OUTPUT_CONSTRUCTION,"./Results/County_Outcomes_During_Development_(2029).csv")
|
write_csv(COUNTY_OUTPUT_CONSTRUCTION,"./Results/County_Outcomes_During_Development_(2029).csv")
|
||||||
|
|
||||||
EMP_OUTPUTS_OPERATING <- DETAILED_DATA %>% filter(YEAR==2030) %>% group_by(IND_DESC) %>% summarize('Employment'=sum(EMP),'Income'=sum(EMP_COMP+PROP_INC),'Other Profits'=sum(OPI)) %>% arrange(desc(Employment)) %>% print(n=50)
|
EMP_OUTPUTS_OPERATING <- DETAILED_DATA %>% filter(YEAR==2030) %>% rename(Industry=IND_DESC) %>% group_by(Industry) %>% summarize('Employment'=sum(EMP),'Income'=sum(EMP_COMP+PROP_INC),'Other Profits'=sum(OPI),'Value Added'=sum(EMP_COMP+PROP_INC+TOPI+OPI),'Economic Output'=sum(OUTPUT)) %>% arrange(desc(Employment))
|
||||||
TOP_20 <- EMP_OUTPUTS_OPERATING[1:20,]
|
TOP_20 <- EMP_OUTPUTS_OPERATING[1:20,]
|
||||||
OTHERS <- TOP_20[1,]
|
OTHERS <- TOP_20[1,]
|
||||||
OTHERS[1,1] <-"Other Industries"
|
OTHERS[1,1] <-"Other Industries"
|
||||||
@ -41,34 +50,84 @@ EMP_OUTPUTS_OPERATING <-rbind(TOP_20,OTHERS)
|
|||||||
EMP_OUTPUTS_OPERATING[,-1] <- round(EMP_OUTPUTS_OPERATING[,-1])
|
EMP_OUTPUTS_OPERATING[,-1] <- round(EMP_OUTPUTS_OPERATING[,-1])
|
||||||
write_csv(EMP_OUTPUTS_OPERATING,"./Results/Top_20_Yearly_Employmnet_During_Operation_(2030+).csv")
|
write_csv(EMP_OUTPUTS_OPERATING,"./Results/Top_20_Yearly_Employmnet_During_Operation_(2030+).csv")
|
||||||
|
|
||||||
COUNTY_OUTPUTS_OPERATING<- EVENT_DATA %>% filter(YEAR==2030) %>% group_by(COUNTY) %>% summarize(EMP=sum(EMP),OUTPUT=sum(OUTPUT),VALUE_ADDED=sum(EMP_COM+PROP_INC+TOPI+OPI),COUNTY_TAX=sum(SUBCOUNTY_TAX+SPECIAL_TAX+COUNTY_TAX),WY_TAX=sum(STATE_TAX)) %>% arrange(desc(EMP)) %>% print(n=200) %>% arrange(desc(EMP))
|
COUNTY_OUTPUTS_OPERATING<- EVENT_DATA %>% filter(YEAR==2030) %>% rename(County=COUNTY) %>% group_by(County) %>% summarize('Total Economic Output'=sum(OUTPUT),'Economic Value Added'=sum(EMP_COM+PROP_INC+TOPI+OPI),Employment=sum(EMP),'County Taxes'=sum(SUBCOUNTY_TAX+SPECIAL_TAX+COUNTY_TAX),'State Taxes'=sum(STATE_TAX)) %>% arrange(desc(Employment))
|
||||||
COUNTY_OUTPUTS_OPERATING[,-1] <- round(COUNTY_OUTPUTS_OPERATING[,-1])
|
COUNTY_OUTPUTS_OPERATING[,-1] <- round(COUNTY_OUTPUTS_OPERATING[,-1])
|
||||||
write_csv(COUNTY_OUTPUTS_OPERATING,"./Results/County_Yearly_Outcomes_During_Operation_(2030+).csv")
|
write_csv(COUNTY_OUTPUTS_OPERATING,"./Results/County_Yearly_Outcomes_During_Operation_(2030+).csv")
|
||||||
|
|
||||||
|
|
||||||
|
STATE_SUMMARY <- EVENT_DATA %>% ungroup() %>% filter(YEAR<=2030) %>% mutate(Period=ifelse(YEAR!=2030,"Development","Operating")) %>% group_by(Period) %>% summarize('Total Economic Output'=sum(OUTPUT),'Economic Value Added'=sum(EMP_COM+PROP_INC+TOPI+OPI),'County Taxes'=sum(SUBCOUNTY_TAX+SPECIAL_TAX+COUNTY_TAX),Employment=sum(EMP),'State Taxes'=sum(STATE_TAX)) %>% arrange(desc(Employment))
|
||||||
|
TEMP <- EVENT_DATA %>% ungroup() %>% filter(YEAR<2030) %>% mutate(Period=ifelse(YEAR!=2030,"Development","Operating")) %>% group_by(Period) %>% summarize(Employment=sum(EMP)/5,'Total Economic Output'=sum(OUTPUT)/5,'Economic Value Added'=sum(EMP_COM+PROP_INC+TOPI+OPI)/5,'County Taxes'=sum(SUBCOUNTY_TAX+SPECIAL_TAX+COUNTY_TAX)/5,'State Taxes'=sum(STATE_TAX)/5) %>% arrange(desc(Employment))
|
||||||
|
STATE_SUMMARY <- rbind(STATE_SUMMARY[2,],TEMP,STATE_SUMMARY[1,])
|
||||||
|
STATE_SUMMARY[,-1] <- round(STATE_SUMMARY[,-1])
|
||||||
|
STATE_SUMMARY$Length <- "Average"
|
||||||
|
STATE_SUMMARY$Length[3] <- "Total"
|
||||||
|
STATE_SUMMARY <- STATE_SUMMARY %>% select(Period,Length,everything())
|
||||||
|
write_csv(STATE_SUMMARY,"./Results/State_Summary.csv")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#Write all tables for publiation
|
||||||
|
kable(STATE_SUMMARY, format = "html", caption = "Economic Impact by Project Period",digits = 1, format.args = list(big.mark = ",")) %>%
|
||||||
|
kable_styling(bootstrap_options = c("striped")) %>%
|
||||||
|
column_spec(1:2, bold = TRUE, color = "Black")
|
||||||
|
|
||||||
|
kable(COUNTY_OUTPUTS_OPERATING, format = "html", caption = "County Level Yearly Economic Impact During Operation",digits = 1, format.args = list(big.mark = ",")) %>%
|
||||||
|
kable_styling(bootstrap_options = c("striped")) %>%
|
||||||
|
column_spec(1, bold = TRUE, color = "Black")
|
||||||
|
|
||||||
|
kable(COUNTY_OUTPUT_CONSTRUCTION, format = "html", caption = "County Level Total Economic Impact During Construction",digits = 1, format.args = list(big.mark = ",")) %>%
|
||||||
|
kable_styling(bootstrap_options = c("striped")) %>%
|
||||||
|
column_spec(1, bold = TRUE, color = "Black")
|
||||||
|
|
||||||
|
|
||||||
|
kable(EMP_OUTPUTS_CONSTRUCTION, format = "html", caption = "Sector Level Total Economic Impact During Construction",digits = 1, format.args = list(big.mark = ",")) %>%
|
||||||
|
kable_styling(bootstrap_options = c("striped")) %>%
|
||||||
|
column_spec(1, bold = TRUE, color = "Black")
|
||||||
|
|
||||||
|
kable(EMP_OUTPUTS_OPERATING, format = "html", caption = "Sector Level Yearly Economic Impact During Operation",digits = 1, format.args = list(big.mark = ",")) %>%
|
||||||
|
kable_styling(bootstrap_options = c("striped")) %>%
|
||||||
|
column_spec(1, bold = TRUE, color = "Black")
|
||||||
|
|
||||||
|
|
||||||
|
#############Make All Figures
|
||||||
#TAX_FILE <- FILES[grep("Taxes",FILES)]
|
#TAX_FILE <- FILES[grep("Taxes",FILES)]
|
||||||
ggplot(aes(x=YEAR,y=EMP,group=IMPACT_TYPE,fill=IMPACT_TYPE),data=EVENT_DATA)+geom_bar(stat = "identity")
|
|
||||||
ggplot(aes(x=YEAR,y=WY_TOTAL_TAX/10^6,group=IMPACT_TYPE,fill=IMPACT_TYPE),data=EVENT_DATA)+geom_bar(stat = "identity")
|
|
||||||
EVENT_DATA$MAJOR_EVENT <- ifelse(EVENT_DATA$MAJOR_EVENT=="Income","Royalties and income",EVENT_DATA$MAJOR_EVENT)
|
EVENT_DATA$MAJOR_EVENT <- ifelse(EVENT_DATA$MAJOR_EVENT=="Income","Royalties and income",EVENT_DATA$MAJOR_EVENT)
|
||||||
|
DATA$MAJOR_EVENT <- ifelse(DATA$MAJOR_EVENT=="Income","Royalties and income",DATA$MAJOR_EVENT)
|
||||||
ORD <- EVENT_DATA$MAJOR_EVENT %>% unique
|
ORD <- EVENT_DATA$MAJOR_EVENT %>% unique
|
||||||
|
DATA$MAJOR_EVENT %>% unique
|
||||||
EVENT_DATA$MAJOR_EVENT <- factor(EVENT_DATA$MAJOR_EVENT,levels=ORD)
|
EVENT_DATA$MAJOR_EVENT <- factor(EVENT_DATA$MAJOR_EVENT,levels=ORD)
|
||||||
ggplot(aes(x=YEAR,y=WY_TOTAL_TAX/10^6,group=IMPACT_TYPE,fill=IMPACT_TYPE),data=EVENT_DATA)+geom_bar(stat = "identity")
|
DATA$MAJOR_EVENT <- factor(DATA$MAJOR_EVENT,levels=ORD)
|
||||||
|
|
||||||
ggplot(aes(x=YEAR,y=WY_TOTAL_TAX/10^6,group=MAJOR_EVENT,fill=MAJOR_EVENT),data=EVENT_DATA)+geom_bar(stat = "identity")+
|
TAX_EVENT <- ggplot(aes(x=YEAR,y=WY_TOTAL_TAX/10^6,group=MAJOR_EVENT,fill=MAJOR_EVENT),data=EVENT_DATA)+geom_bar(stat = "identity")+
|
||||||
ylab("Wyoming Taxes (Million USD)") +
|
ylab("Wyoming Taxes (Million USD)") +
|
||||||
xlab("Year")+
|
xlab("Year")+
|
||||||
labs(fill='Economic Event')+
|
labs(fill='Economic Event')+
|
||||||
scale_x_continuous(breaks=2025:2031)+
|
scale_x_continuous(breaks=2025:2031)+
|
||||||
theme(legend.position = "top")+
|
theme(legend.position = "top")+
|
||||||
theme(text=element_text(size=20))
|
theme(text=element_text(size=20))+scale_fill_brewer(palette = "Pastel1")
|
||||||
ggplot(aes(x=YEAR,y=EMP,group=MAJOR_EVENT,fill=MAJOR_EVENT),data=EVENT_DATA)+geom_bar(stat = "identity")+
|
EMP_EVENT<- ggplot(aes(x=YEAR,y=EMP,group=MAJOR_EVENT,fill=MAJOR_EVENT),data=EVENT_DATA)+geom_bar(stat = "identity")+
|
||||||
ylab("Wyoming Added Employment (Person-Years)") +
|
ylab("Added Employment (Person-Years)") +
|
||||||
xlab("Year")+
|
xlab("Year")+
|
||||||
labs(fill='Economic Event')+
|
labs(fill='Economic Event')+
|
||||||
scale_x_continuous(breaks=2025:2031)+
|
scale_x_continuous(breaks=2025:2031)+
|
||||||
theme(legend.position = "top")+
|
theme(legend.position = "top")+
|
||||||
theme(text=element_text(size=20))
|
theme(text=element_text(size=20))+scale_fill_brewer(palette = "Set3")
|
||||||
|
VA_EVENT <- ggplot(aes(x=YEAR,y=VA/10^6,group=MAJOR_EVENT,fill=MAJOR_EVENT),data=EVENT_DATA)+geom_bar(stat = "identity")+
|
||||||
ggplot(aes(x=YEAR,y=WY_TOTAL_TAX/10^6,group=IMPACT_TYPE,fill=IMPACT_TYPE),data=EVENT_DATA)+geom_bar(stat = "identity")+
|
ylab("Value Added (Million USD)") +
|
||||||
|
xlab("Year")+
|
||||||
|
labs(fill='Economic Event')+
|
||||||
|
scale_x_continuous(breaks=2025:2031)+
|
||||||
|
theme(legend.position = "top")+
|
||||||
|
theme(text=element_text(size=20))+scale_fill_brewer(palette = "Pastel1")
|
||||||
|
OUTPUT_EVENT <- ggplot(aes(x=YEAR,y=OUTPUT/10^6,group=MAJOR_EVENT,fill=MAJOR_EVENT),data=EVENT_DATA)+geom_bar(stat = "identity")+
|
||||||
|
ylab("Value Added (Million USD)") +
|
||||||
|
xlab("Year")+
|
||||||
|
labs(fill='Economic Event')+
|
||||||
|
scale_x_continuous(breaks=2025:2031)+
|
||||||
|
theme(legend.position = "top")+
|
||||||
|
theme(text=element_text(size=20))+scale_fill_brewer(palette = "Pastel1")
|
||||||
|
TAX_TYPE <- ggplot(aes(x=YEAR,y=WY_TOTAL_TAX/10^6,group=IMPACT_TYPE,fill=IMPACT_TYPE),data=EVENT_DATA)+geom_bar(stat = "identity")+
|
||||||
ylab("Wyoming Taxes (Million USD)") +
|
ylab("Wyoming Taxes (Million USD)") +
|
||||||
xlab("Year")+
|
xlab("Year")+
|
||||||
labs(fill='Impact Type')+
|
labs(fill='Impact Type')+
|
||||||
@ -76,10 +135,60 @@ ggplot(aes(x=YEAR,y=WY_TOTAL_TAX/10^6,group=IMPACT_TYPE,fill=IMPACT_TYPE),data=E
|
|||||||
theme(legend.position = "top")+
|
theme(legend.position = "top")+
|
||||||
theme(text=element_text(size=20))
|
theme(text=element_text(size=20))
|
||||||
|
|
||||||
ggplot(aes(x=YEAR,y=EMP,group=IMPACT_TYPE,fill=IMPACT_TYPE),data=EVENT_DATA)+geom_bar(stat = "identity")+
|
EMP_TYPE <- ggplot(aes(x=YEAR,y=EMP,group=IMPACT_TYPE,fill=IMPACT_TYPE),data=EVENT_DATA)+geom_bar(stat = "identity")+
|
||||||
ylab("Wyoming Added Employment (Person-Years)") +
|
ylab("Added Employment (Person-Years)") +
|
||||||
xlab("Year")+
|
xlab("Year")+
|
||||||
labs(fill='Impact Type')+
|
labs(fill='Impact Type')+
|
||||||
scale_x_continuous(breaks=2025:2031)+
|
scale_x_continuous(breaks=2025:2031)+
|
||||||
theme(legend.position = "top")+
|
theme(legend.position = "top")+
|
||||||
theme(text=element_text(size=20))
|
theme(text=element_text(size=20))
|
||||||
|
|
||||||
|
VA_TYPE <- ggplot(aes(x=YEAR,y=VA/10^6,group=IMPACT_TYPE,fill=IMPACT_TYPE),data=EVENT_DATA)+geom_bar(stat = "identity")+
|
||||||
|
ylab("Value Added (Million USD)") +
|
||||||
|
xlab("Year")+
|
||||||
|
labs(fill='Impact Type')+
|
||||||
|
scale_x_continuous(breaks=2025:2031)+
|
||||||
|
theme(legend.position = "top")+
|
||||||
|
theme(text=element_text(size=20))
|
||||||
|
|
||||||
|
OUTPUT_TYPE <- ggplot(aes(x=YEAR,y=OUTPUT/10^6,group=IMPACT_TYPE,fill=IMPACT_TYPE),data=EVENT_DATA)+geom_bar(stat = "identity")+
|
||||||
|
ylab("Total Output (Million USD)") +
|
||||||
|
xlab("Year")+
|
||||||
|
labs(fill='Impact Type')+
|
||||||
|
scale_x_continuous(breaks=2025:2031)+
|
||||||
|
theme(legend.position = "top")+
|
||||||
|
theme(text=element_text(size=20))
|
||||||
|
COMBINED_EVENT <- rbind(DATA %>% select(YEAR,MAJOR_EVENT,RES=OUTPUT) %>% mutate(GROUP="Economic Output",AREA="Total"),
|
||||||
|
DATA %>% select(YEAR,MAJOR_EVENT,RES=VA) %>% mutate(GROUP="Economic Value Added",AREA="Total"),
|
||||||
|
DATA %>% select(YEAR,MAJOR_EVENT,RES=EMP_COM) %>% mutate(GROUP="Wyoming Salaries Paid",AREA="Wyoming"),
|
||||||
|
DATA %>% select(YEAR,MAJOR_EVENT,RES=WY_TOTAL_TAX) %>% mutate(GROUP="Wyoming Taxes",AREA="Wyoming")) %>% filter(YEAR<2032)
|
||||||
|
COMBINED_EVENT
|
||||||
|
|
||||||
|
|
||||||
|
FACET_PLOT_EVENT <- ggplot(aes(x=YEAR,y=RES/10^6,fill=MAJOR_EVENT,group=GROUP),data=COMBINED_EVENT)+
|
||||||
|
geom_bar(stat = "identity")+facet_wrap(~GROUP,nrow=2)+
|
||||||
|
ylab("Million USD") +
|
||||||
|
xlab("Year")+
|
||||||
|
labs(fill='Impact Type')+
|
||||||
|
scale_x_continuous(breaks=2025:2031)+
|
||||||
|
scale_y_continuous(breaks=c(0,5,10,15,seq(20,80,by=10)))+
|
||||||
|
theme(legend.position = "top")+
|
||||||
|
theme(text=element_text(size=20))+scale_fill_brewer(palette = "Set3")
|
||||||
|
FACET_PLOT_EVENT
|
||||||
|
|
||||||
|
COMBINED_TYPE <- rbind(EVENT_DATA %>% select(YEAR,IMPACT_TYPE,RES=OUTPUT) %>% mutate(GROUP="Economic Output",AREA="Total"),
|
||||||
|
EVENT_DATA %>% select(YEAR,IMPACT_TYPE,RES=VA) %>% mutate(GROUP="Economic Value Added",AREA="Total"),
|
||||||
|
EVENT_DATA %>% select(YEAR,IMPACT_TYPE,RES=EMP_COM) %>% mutate(GROUP="Wyoming Salaries Paid",AREA="Wyoming"),
|
||||||
|
EVENT_DATA %>% select(YEAR,IMPACT_TYPE,RES=WY_TOTAL_TAX) %>% mutate(GROUP="Wyoming Taxes",AREA="Wyoming")) %>% filter(YEAR<2032)
|
||||||
|
FACET_PLOT_TYPE <- ggplot(aes(x=YEAR,y=RES/10^6,fill=IMPACT_TYPE,group=IMPACT_TYPE),data=COMBINED_TYPE)+
|
||||||
|
geom_bar(stat = "identity")+facet_wrap(~GROUP,nrow=2)+
|
||||||
|
ylab("Million USD") +
|
||||||
|
xlab("Year")+
|
||||||
|
labs(fill='Impact Type')+
|
||||||
|
scale_x_continuous(breaks=2025:2031)+
|
||||||
|
scale_y_continuous(breaks=c(0,5,10,15,seq(20,80,by=10)))+
|
||||||
|
theme(legend.position = "top")+
|
||||||
|
theme(text=element_text(size=20))+scale_fill_brewer(palette = "Pastel1")
|
||||||
|
FACET_PLOT_TYPE
|
||||||
|
FACET_PLOT_EVENT
|
||||||
|
EMP_EVENT
|
||||||
Loading…
x
Reference in New Issue
Block a user