#New scripts GET_YEAR_DATA <- function(C_YEAR,DATA_PATH){ FILE_LIST <- list.files(paste0(DATA_PATH,C_YEAR)) TAX_FILE <- paste0(DATA_PATH,C_YEAR,"/",FILE_LIST[grep("Taxes",FILE_LIST)]) ECON_FILE <- paste0(DATA_PATH,C_YEAR,"/",FILE_LIST[grep("Economic",FILE_LIST)]) DAT <- read_csv(ECON_FILE)[,-1] %>% select(-TagName) colnames(DAT) <- c("Event","County_Name","Impact","Employment","Labor_Income","Value_Added","Output") DAT <- DAT[!is.na(DAT[,1]),] TAX <- read_csv(TAX_FILE)[,-1] %>% select(-TagName) colnames(TAX) <- c("Event","County_Name","Impact","Subcounty","Special","County","State","Federal","Total") TAX <- TAX[!is.na(TAX[,1]),] TAX$STATE_TOTAL <- rowSums(TAX[,4:7]) DAT <- full_join(DAT,TAX) #rm(TAX) DAT$County_Name <- gsub(" County, WY \\(2023\\)","",DAT$County_Name) DAT$Impact <- gsub(" - ","",gsub("1","",gsub("2","",gsub("3","",DAT$Impact)))) DAT$Group <- NA DAT[grep('Skid',DAT$Event),"Group"] <- "Skid" DAT[grep('Purchase',DAT$Event),"Group"] <- "Beet Purchase" DAT[grep('Truck',DAT$Event),"Group"] <- "Transportation" DAT[DAT$Event=="Gas Production (Campbell)","Group"] <- "Gas Produciton" DAT[is.na(DAT$Group),"Group"] <- "Processing Facilities" #Remove the direct transportation effects induced by by beet purchases, by adding in a negative impact of rail and truck equal to the direct effect found in the first run. DAT[grep('Adjustment',DAT$Event),"Group"] <- "Beet Purchase" DAT <- DAT %>% select(Minor_Event=Event,Major_Event=Group,everything()) DAT$Year <- C_YEAR DAT <-DAT %>% select(Year,everything()) return(DAT) } GET_ALL_DATA <- function(DATA_PATH){ YEARS_OF_DATA <- list.files(DATA_PATH) for(i in 1:length(YEARS_OF_DATA)){ if(!exists("RES")){ RES<- GET_YEAR_DATA(YEARS_OF_DATA[i],DATA_PATH) }else{ RES<- rbind(RES,GET_YEAR_DATA(YEARS_OF_DATA[i],DATA_PATH)) %>% as_tibble } } return(RES) }