library(tidyverse) #R script to quickly find IMPLAN inputs or adjustment factors YEAR <- 2027 #TAX_FILE <- FILES[grep("Taxes",FILES)] GET_TRANSPORT_ADJ <- function(YEAR){ YEAR <- ifelse(YEAR>2030,2030,YEAR) HEADER <- paste0('./Raw_Output/Prelim-Runs/') FILES <- list.files(HEADER) FILE <- paste0(HEADER,FILES[grep(paste0(YEAR,"-"),FILES)]) DF <- read_csv(FILE) DF$County <- gsub(" County, WY \\(2023\\)","",DF$DestinationRegion ) DF$Impact_County <- gsub(" County, WY Group","",DF$OriginRegion ) TEMP <- DF %>% filter(ImpactType!="Induced",County==Impact_County,IndustryCode %in% c(397,399),TagName %in% c("Beet Purchase","SBS Purchase")) %>% group_by(County,IndustryCode,IndustryDescription) %>% summarize(Output=-sum(Output)) %>% arrange(Output) return(TEMP) } GET_INCOME_ADJ <- function(YEAR){ PROFIT <- c(0,-1568776,3691597,9769730,26627999,52383510,55929633,56121706,56175248,56188791,56190869) TOTAL_PROFIT <- (PROFIT[YEAR-2023]-179917) YEAR <- ifelse(YEAR>2030,2030,YEAR) HEADER <- paste0('./Raw_Output/Prelim-Runs/') FILES <- list.files(HEADER) FILE <- paste0(HEADER,FILES[grep(paste0(YEAR,"-"),FILES)]) DF <- read_csv(FILE) DF$County <- gsub(" County, WY \\(2023\\)","",DF$DestinationRegion ) DF$Impact_County <- gsub(" County, WY Group","",DF$OriginRegion ) REPORTED_PROFIT <- DF %>% filter(EventName=="Natural Gas Prod (Campbell)",ImpactType=="Direct",IndustryCode==20) %>% group_by(IndustryDescription) %>% summarize(TOTAL=OtherPropertyIncome+ProprietorIncome) %>% pull(TOTAL) PROFIT_ADJ <- TOTAL_PROFIT-REPORTED_PROFIT return(PROFIT_ADJ) } CYEAR <- 2030 GET_INCOME_ADJ(CYEAR) GET_TRANSPORT_ADJ(CYEAR)