library(tidyverse) #R script to quickly find IMPLAN inputs or adjustment factors GET_INPUTS_GAS <- function(YEAR){ FILES <- list.files("./Raw_Output/Detailed_Economic_Indicators/Prelim-Run") FILE <- paste0("./Raw_Output/Detailed_Economic_Indicators/Prelim-Run/",FILES[grep(paste0("-",YEAR),FILES)]) #Dollar value added to the RNG in addition to the main production RNG_ADD_YEARS <- c(0,380102,3097001,5943721,11224037,18050255,18050255) RNG_ADD <- RNG_ADD_YEARS[YEAR-2023] DF <- read_csv(FILE) %>% filter(ImpactType=="Direct",EventName=="Gas Production (Campbell)") DF <- DF %>% mutate(IntermediateInputs=Output-EmployeeCompensation-ProprietorIncome-OtherPropertyIncome-TaxesOnProductionAndImports)%>% select(WageAndSalaryEmployment,EmployeeCompensation,Output,ProprietorEmployment,OtherPropertyIncome,Employment,IntermediateInputs)%>% mutate(Output=Output+RNG_ADD) return(DF) } #Find the input values for the beet factories GET_INPUTS_BEET <- function(YEAR,OP_COST=75){ MAX_WASH_EMP <- 8 MAX_GOSHEN_EMP <-15 GOSHEN_WAGE <- 53007.10 WASH_WAGE <- 71017.25 WASH_PROD <- c(0,0,0,35000,37500,50000,50000) GOSHEN_PROD <- c(0,0,0,52500,112500,150000,150000) GOSHEN_OP_COST <- OP_COST*GOSHEN_PROD WASH_OP_COST <- OP_COST*WASH_PROD GOSHEN_TAX_CRED <- GOSHEN_PROD*0.62*90 WASH_TAX_CRED <- WASH_PROD*0.62*90 WASH_EMP <- MAX_WASH_EMP*(WASH_PROD)/max(WASH_PROD) GOSHEN_EMP <- MAX_GOSHEN_EMP*(GOSHEN_PROD)/max(GOSHEN_PROD) TOPI <- GOSHEN_EMP*0 OTH_PROP <- GOSHEN_EMP*0 GOSHEN_COMP <- GOSHEN_WAGE*GOSHEN_EMP WASH_COMP <- WASH_WAGE*WASH_EMP WASH_RETURN <- WASH_TAX_CRED-WASH_COMP-WASH_OP_COST GOSHEN_RETURN <- GOSHEN_TAX_CRED-GOSHEN_COMP-GOSHEN_OP_COST RES <- rbind(as.numeric(cbind(WASH_EMP,WASH_COMP,WASH_RETURN,TOPI,OTH_PROP,WASH_OP_COST)[YEAR-2023,]),as.numeric(cbind(GOSHEN_EMP,GOSHEN_COMP,GOSHEN_RETURN,TOPI,OTH_PROP,GOSHEN_OP_COST)[YEAR-2023,])) %>% as_tibble colnames(RES) <- c("Wage_Emp","Compensation","Proprietor_Income","TOPI","OTHER_PROP","Inter_Inputs") RES$County <- c("Washakie","Goshen") RES <- RES %>% select(County,everything()) return(RES) } #Pull the truck and rail transportation induced, to remove it from IMPLAN results. Those costs are explicitly modeled. GET_ADJ <- function(YEAR){ FILES <- list.files("./Raw_Output/Detailed_Economic_Indicators/Prelim-Run/") FILE <- paste0("./Raw_Output/Detailed_Economic_Indicators/Prelim-Run/",FILES[grep(paste0("-",YEAR),FILES)]) DF <- read_csv(FILE) %>% filter(ImpactType=="Direct",IndustryCode %in% c(397,399),TagName=="beet purchase") DF$County <- gsub(" County, WY \\(2023\\)","",DF$DestinationRegion ) DF <- DF %>% select(County, Industry=IndustryDescription,Output) %>% mutate(Output=-Output) return(DF) } GET_INPUTS_GAS(2028) GET_INPUTS_BEET(2029,10) GET_ADJ(2027)