library(tidyverse) DATA_PATH <- "./Raw_Output/" source("Scripts/Data_Proc_Script.r") EVENT_DATA <- GET_EVENT_DATA(2025:2031) write_csv(EVENT_DATA,"./Results/Yearly_Detailed_Event_Data.csv") DATA <- GET_SUMMARY_DATA() DATA[,c(-2:-6,-8:-10)] <- round(DATA[,c(-2:-6,-8:-10)]) DATA[,c(3:6,8:10)] <- round(DATA[,c(3:6,8:10)],2) DATA[2,3:6] <- NA write_csv(DATA,"./Results/Yearly_Event_Summary.csv") DETAILED_DATA <- GET_DETAIL_ECON_DATA() write_csv(DETAILED_DATA,"./Results/Detailed_Economic_Indicators.csv") SUMMARY_BY_YEAR <- round(GET_TOTAL_SUMMARY()) write_csv(SUMMARY_BY_YEAR,"./Results/Yearly_State_Totals.csv") #Advanced Summary Tables EMP_OUTPUTS_CONSTRUCTION <- DETAILED_DATA %>% filter(YEAR<=2029) %>% group_by(IND_DESC) %>% summarize('Employment'=sum(EMP),'Income'=sum(EMP_COMP+PROP_INC),'Other Profits'=sum(OPI)) %>% arrange(desc(Employment)) TOP_20 <- EMP_OUTPUTS_CONSTRUCTION[1:20,] OTHERS <- TOP_20[1,] OTHERS[1,1] <-"Other Industries" OTHERS[,-1] <- t(colSums(EMP_OUTPUTS_CONSTRUCTION[-1-20,-1] )) EMP_OUTPUTS_CONSTRUCTION <-rbind(TOP_20,OTHERS) EMP_OUTPUTS_CONSTRUCTION[,-1] <- round(EMP_OUTPUTS_CONSTRUCTION[,-1]) write_csv(EMP_OUTPUTS_CONSTRUCTION,"./Results/Top_20_Employmnet_During_Development_(2029).csv") EMP_OUTPUTS_CONSTRUCTION%>% print(n=100) COUNTY_OUTPUT_CONSTRUCTION <- EVENT_DATA %>% filter(YEAR<=2029) %>% group_by(COUNTY) %>% summarize(EMP=sum(EMP),OUTPUT=sum(OUTPUT),VALUE_ADDED=sum(EMP_COM+PROP_INC+TOPI+OPI),COUNTY_TAX=sum(SUBCOUNTY_TAX+SPECIAL_TAX+COUNTY_TAX),WY_TAX=sum(STATE_TAX)) %>% arrange(desc(EMP)) %>% print(n=200) COUNTY_OUTPUT_CONSTRUCTION[,-1] <- round(COUNTY_OUTPUT_CONSTRUCTION[,-1]) write_csv(COUNTY_OUTPUT_CONSTRUCTION,"./Results/County_Outcomes_During_Development_(2029).csv") EMP_OUTPUTS_OPERATING <- DETAILED_DATA %>% filter(YEAR==2030) %>% group_by(IND_DESC) %>% summarize('Employment'=sum(EMP),'Income'=sum(EMP_COMP+PROP_INC),'Other Profits'=sum(OPI)) %>% arrange(desc(Employment)) %>% print(n=50) TOP_20 <- EMP_OUTPUTS_OPERATING[1:20,] OTHERS <- TOP_20[1,] OTHERS[1,1] <-"Other Industries" OTHERS[,-1] <- t(colSums(EMP_OUTPUTS_OPERATING[-1-20,-1] )) EMP_OUTPUTS_OPERATING <-rbind(TOP_20,OTHERS) EMP_OUTPUTS_OPERATING[,-1] <- round(EMP_OUTPUTS_OPERATING[,-1]) write_csv(EMP_OUTPUTS_OPERATING,"./Results/Top_20_Yearly_Employmnet_During_Operation_(2030+).csv") COUNTY_OUTPUTS_OPERATING<- EVENT_DATA %>% filter(YEAR==2030) %>% group_by(COUNTY) %>% summarize(EMP=sum(EMP),OUTPUT=sum(OUTPUT),VALUE_ADDED=sum(EMP_COM+PROP_INC+TOPI+OPI),COUNTY_TAX=sum(SUBCOUNTY_TAX+SPECIAL_TAX+COUNTY_TAX),WY_TAX=sum(STATE_TAX)) %>% arrange(desc(EMP)) %>% print(n=200) %>% arrange(desc(EMP)) COUNTY_OUTPUTS_OPERATING[,-1] <- round(COUNTY_OUTPUTS_OPERATING[,-1]) write_csv(COUNTY_OUTPUTS_OPERATING,"./Results/County_Yearly_Outcomes_During_Operation_(2030+).csv") #TAX_FILE <- FILES[grep("Taxes",FILES)] ggplot(aes(x=YEAR,y=EMP,group=IMPACT_TYPE,fill=IMPACT_TYPE),data=EVENT_DATA)+geom_bar(stat = "identity") ggplot(aes(x=YEAR,y=WY_TOTAL_TAX/10^6,group=IMPACT_TYPE,fill=IMPACT_TYPE),data=EVENT_DATA)+geom_bar(stat = "identity") EVENT_DATA$MAJOR_EVENT <- ifelse(EVENT_DATA$MAJOR_EVENT=="Income","Royalties and income",EVENT_DATA$MAJOR_EVENT) ORD <- EVENT_DATA$MAJOR_EVENT %>% unique EVENT_DATA$MAJOR_EVENT <- factor(EVENT_DATA$MAJOR_EVENT,levels=ORD) ggplot(aes(x=YEAR,y=WY_TOTAL_TAX/10^6,group=IMPACT_TYPE,fill=IMPACT_TYPE),data=EVENT_DATA)+geom_bar(stat = "identity") ggplot(aes(x=YEAR,y=WY_TOTAL_TAX/10^6,group=MAJOR_EVENT,fill=MAJOR_EVENT),data=EVENT_DATA)+geom_bar(stat = "identity")+ ylab("Wyoming Taxes (Million USD)") + xlab("Year")+ labs(fill='Economic Event')+ scale_x_continuous(breaks=2025:2031)+ theme(legend.position = "top")+ theme(text=element_text(size=20)) ggplot(aes(x=YEAR,y=EMP,group=MAJOR_EVENT,fill=MAJOR_EVENT),data=EVENT_DATA)+geom_bar(stat = "identity")+ ylab("Wyoming Added Employment (Person-Years)") + xlab("Year")+ labs(fill='Economic Event')+ scale_x_continuous(breaks=2025:2031)+ theme(legend.position = "top")+ theme(text=element_text(size=20)) ggplot(aes(x=YEAR,y=WY_TOTAL_TAX/10^6,group=IMPACT_TYPE,fill=IMPACT_TYPE),data=EVENT_DATA)+geom_bar(stat = "identity")+ ylab("Wyoming Taxes (Million USD)") + xlab("Year")+ labs(fill='Impact Type')+ scale_x_continuous(breaks=2025:2031)+ theme(legend.position = "top")+ theme(text=element_text(size=20)) ggplot(aes(x=YEAR,y=EMP,group=IMPACT_TYPE,fill=IMPACT_TYPE),data=EVENT_DATA)+geom_bar(stat = "identity")+ ylab("Wyoming Added Employment (Person-Years)") + xlab("Year")+ labs(fill='Impact Type')+ scale_x_continuous(breaks=2025:2031)+ theme(legend.position = "top")+ theme(text=element_text(size=20))