33 lines
1.6 KiB
R
33 lines
1.6 KiB
R
library(tidyverse)
|
|
#R script to quickly find IMPLAN inputs or adjustment factors
|
|
YEAR <- 2027
|
|
#TAX_FILE <- FILES[grep("Taxes",FILES)]
|
|
GET_TRANSPORT_ADJ <- function(YEAR){
|
|
YEAR <- ifelse(YEAR>2030,2030,YEAR)
|
|
HEADER <- paste0('./Raw_Output/Prelim-Runs/')
|
|
FILES <- list.files(HEADER)
|
|
FILE <- paste0(HEADER,FILES[grep(paste0(YEAR,"-"),FILES)])
|
|
DF <- read_csv(FILE)
|
|
DF$County <- gsub(" County, WY \\(2023\\)","",DF$DestinationRegion )
|
|
DF$Impact_County <- gsub(" County, WY Group","",DF$OriginRegion )
|
|
TEMP <- DF %>% filter(ImpactType!="Induced",County==Impact_County,IndustryCode %in% c(397,399),TagName %in% c("Beet Purchase","SBS Purchase")) %>% group_by(County,IndustryCode,IndustryDescription) %>% summarize(Output=-sum(Output)) %>% arrange(Output)
|
|
return(TEMP)
|
|
}
|
|
|
|
GET_INCOME_ADJ <- function(YEAR){
|
|
PROFIT <- c(0,-1568776,3691597,9769730,26627999,52383510,55929633,56121706,56175248,56188791,56190869)
|
|
TOTAL_PROFIT <- (PROFIT[YEAR-2023]-179917)
|
|
YEAR <- ifelse(YEAR>2030,2030,YEAR)
|
|
HEADER <- paste0('./Raw_Output/Prelim-Runs/')
|
|
FILES <- list.files(HEADER)
|
|
FILE <- paste0(HEADER,FILES[grep(paste0(YEAR,"-"),FILES)])
|
|
DF <- read_csv(FILE)
|
|
DF$County <- gsub(" County, WY \\(2023\\)","",DF$DestinationRegion )
|
|
DF$Impact_County <- gsub(" County, WY Group","",DF$OriginRegion )
|
|
REPORTED_PROFIT <- DF %>% filter(EventName=="Natural Gas Prod (Campbell)",ImpactType=="Direct",IndustryCode==20) %>% group_by(IndustryDescription) %>% summarize(TOTAL=OtherPropertyIncome+ProprietorIncome) %>% pull(TOTAL)
|
|
PROFIT_ADJ <- TOTAL_PROFIT-REPORTED_PROFIT
|
|
return(PROFIT_ADJ)
|
|
}
|
|
|
|
|