diff --git a/Create_Tables.r b/Create_Tables.r index 0f53fb3..b9175c6 100644 --- a/Create_Tables.r +++ b/Create_Tables.r @@ -23,7 +23,8 @@ GET_SUMMARY <- function(COL_NUM,DATA){ RES <- RES[,c(1,5,2:4)] return(RES) } -TOTAL_IMPACT_SUMMARY <- DATA +TOTAL_IMPACT_SUMMARY <- DATA %>% group_by(Event_Name,Impact) %>% summarize(Employment=sum(Employment),Labor_Income=sum(Labor_Income),Value_Added=sum(Value_Added),Output=sum(Output)) + DIRECT_SPLIT_SUMMARY <- rbind(GET_SUMMARY(3,DATA),GET_SUMMARY(4,DATA),GET_SUMMARY(5,DATA),GET_SUMMARY(6,DATA)) %>% arrange(Event_Name) write_csv(DIRECT_SPLIT_SUMMARY, "Results/Event_Impact_Summary.csv") @@ -38,15 +39,17 @@ TAX_SUMMARY <- TAX %>% group_by(Event_Name,Impact) %>% summarize(County=sum(Cou TAX_SUMMARY[TAX_SUMMARY$Impact=='Direct',-1:-2] <- 0.25*TAX_SUMMARY[TAX_SUMMARY$Impact=='Direct',-1:-2] GET_SUMMARY(6,TAX_SUMMARY) DIRECT_SPLIT_SUMMARY <- rbind(GET_SUMMARY(3,DATA),GET_SUMMARY(4,DATA),GET_SUMMARY(5,DATA),GET_SUMMARY(6,DATA)) %>% arrange(Event_Name) -DIRECT_SPLIT_SUMMARY -TAX_SUMMARY -DIRECT_SPLIT_SUMMARY <- rbind(DIRECT_SPLIT_SUMMARY,GET_SUMMARY(6,TAX_SUMMARY) %>% mutate(Type='Wyoming Total Taxes')) %>% arrange(Event_Name) +DIRECT_SPLIT_SUMMARY <- rbind(DIRECT_SPLIT_SUMMARY,GET_SUMMARY(6,TAX_SUMMARY) %>% mutate(Type='Wyoming Total Taxes')) %>% arrange(Event_Name) %>% unique write_csv(DIRECT_SPLIT_SUMMARY, "Results/Impact_Ratio_Summary.csv") -DIRECT_SPLIT_SUMMARY -TOTAL_IMPACT_SUMMARY -colnames(TAX_SUMMARY)[-1:-2] <- paste0(colnames(TAX_SUMMARY)[-1:-2],"_Taxes") -TOTAL_IMPACT_SUMMARY <- left_join(TOTAL_IMPACT_SUMMARY ,TAX_SUMMARY) %>% arrange(Event_Name) +TOTAL_IMPACT_SUMMARY <- left_join(TOTAL_IMPACT_SUMMARY ,TAX_SUMMARY) %>% arrange(Event_Name) %>% select(-Federal) +TOTAL_IMPACT_SUMMARY <- full_join(TOTAL_IMPACT_SUMMARY, TOTAL_IMPACT_SUMMARY %>% group_by(Event_Name) %>% summarize(Impact='Total',Employment=sum(Employment),Labor_Income=sum(Labor_Income),Value_Added=sum(Value_Added),Output=sum(Output),Wyoming_Total=sum(Wyoming_Total),State=sum(State),County=sum(County)) %>% arrange(Event_Name,Impact)) %>% select(Event_Name,Impact,Employment,Labor_Income,Value_Added,Output,Wyoming_Total,State,County) +TOTAL_IMPACT_SUMMARY[,3] <- round(TOTAL_IMPACT_SUMMARY[,3]) +TOTAL_IMPACT_SUMMARY[4:9] <- round(TOTAL_IMPACT_SUMMARY[4:9]/10^6,2) +colnames(TOTAL_IMPACT_SUMMARY)[7:9] <- paste0(colnames(TOTAL_IMPACT_SUMMARY[,7:9]),"_Taxes") +colnames(TOTAL_IMPACT_SUMMARY) +TOTAL_IMPACT_SUMMARY %>% arrange(Event_Name,Impact) + write_csv(TOTAL_IMPACT_SUMMARY, "Results/Event_Impact_Summary.csv")