Added output tables
This commit is contained in:
parent
69e42fbb25
commit
09d67623fa
@ -17,6 +17,15 @@ REG_DATA_2016 <- REG_DATA %>% filter(Year>=2016)
|
|||||||
MOD <- feols(Age_.[0:85]~US_Adj_Death_Rate+Sex*Year+WUPI+L_WUPI,REG_DATA, data.save = TRUE)
|
MOD <- feols(Age_.[0:85]~US_Adj_Death_Rate+Sex*Year+WUPI+L_WUPI,REG_DATA, data.save = TRUE)
|
||||||
MOD_2016 <- feols(Age_.[0:85]~US_Adj_Death_Rate+Sex*Year+WUPI+L_WUPI,REG_DATA_2016, data.save = TRUE)
|
MOD_2016 <- feols(Age_.[0:85]~US_Adj_Death_Rate+Sex*Year+WUPI+L_WUPI,REG_DATA_2016, data.save = TRUE)
|
||||||
|
|
||||||
|
###Save results
|
||||||
|
if(!exists("SAVE_FIG_LOC")){SAVE_FIG_LOC <- "./Results/Age_Mortality_Regression"}
|
||||||
|
dir.create(SAVE_FIG_LOC , recursive = TRUE, showWarnings = FALSE)
|
||||||
|
REG_TABLE_LOC <- paste0(SAVE_FIG_LOC,"/Morality_by_Age_Regressions.png")
|
||||||
|
REG_TABLE_TEX_LOC <- paste0(SAVE_FIG_LOC,"/Mortality_by_Age_Regressions.tex")
|
||||||
|
|
||||||
|
DICT <- c("US_Adj_Death_Rate"="US Mortality Rate","SexMale"="Male","WUPI"="Pandemic Index","L_WUPI"="Pandemic Index (1 Year)")
|
||||||
|
etable(MOD[[1]],MOD[[19]],MOD[[31]],MOD[[61]],MOD[[81]],dict=DICT,style.tex=style.tex(yesNo="$\\checkmark$"),file=REG_TABLE_TEX_LOC ,export=REG_TABLE_LOC,replace=TRUE)
|
||||||
|
|
||||||
|
|
||||||
###Simulate each age-sex death rate over time with the models
|
###Simulate each age-sex death rate over time with the models
|
||||||
#########When project far into the future some death rate values become negative. Make bounds to limit the forecast to a reasonable range. In this case I select half of the historic minimum, or double the historic maximum as upper an lower bounds in the study period.
|
#########When project far into the future some death rate values become negative. Make bounds to limit the forecast to a reasonable range. In this case I select half of the historic minimum, or double the historic maximum as upper an lower bounds in the study period.
|
||||||
|
|||||||
@ -1,6 +1,8 @@
|
|||||||
library(tidyverse)
|
library(tidyverse)
|
||||||
library(forecast)
|
library(forecast)
|
||||||
library(lmtest)
|
library(lmtest)
|
||||||
|
library(texreg)
|
||||||
|
|
||||||
####################
|
####################
|
||||||
DATA_WOMEN <- readRDS("Data/Cleaned_Data/Mortality_Data/RDS/Mortality_Rate_and_Pandemic_Data_for_Regression.Rds") %>% filter(Sex=='Female')
|
DATA_WOMEN <- readRDS("Data/Cleaned_Data/Mortality_Data/RDS/Mortality_Rate_and_Pandemic_Data_for_Regression.Rds") %>% filter(Sex=='Female')
|
||||||
DATA_MEN <- readRDS("Data/Cleaned_Data/Mortality_Data/RDS/Mortality_Rate_and_Pandemic_Data_for_Regression.Rds") %>% filter(Sex=='Male')
|
DATA_MEN <- readRDS("Data/Cleaned_Data/Mortality_Data/RDS/Mortality_Rate_and_Pandemic_Data_for_Regression.Rds") %>% filter(Sex=='Male')
|
||||||
@ -39,11 +41,13 @@ FORECAST_XREG_2016[,] <- 0
|
|||||||
|
|
||||||
|
|
||||||
MOD_US_WOMEN <- auto.arima(TS_WOMEN_US,lambda=0,biasadj=TRUE,xreg=TS_PANDEMIC)
|
MOD_US_WOMEN <- auto.arima(TS_WOMEN_US,lambda=0,biasadj=TRUE,xreg=TS_PANDEMIC)
|
||||||
|
MOD_US_WOMEN
|
||||||
MOD_US_WOMEN_2016 <- auto.arima(TS_WOMEN_US_2016,lambda=0,biasadj=TRUE,xreg=TS_PANDEMIC_2016)
|
MOD_US_WOMEN_2016 <- auto.arima(TS_WOMEN_US_2016,lambda=0,biasadj=TRUE,xreg=TS_PANDEMIC_2016)
|
||||||
#checkresiduals(MOD_US_WOMEN)
|
#checkresiduals(MOD_US_WOMEN)
|
||||||
MEN_XREG <- cbind(TS_WOMEN_US,TS_PANDEMIC)
|
MEN_XREG <- cbind(TS_WOMEN_US,TS_PANDEMIC)
|
||||||
MEN_XREG_2016 <- cbind(TS_WOMEN_US_2016,TS_PANDEMIC_2016)
|
MEN_XREG_2016 <- cbind(TS_WOMEN_US_2016,TS_PANDEMIC_2016)
|
||||||
|
|
||||||
|
MOD_US_MEN <- auto.arima(TS_MEN_US,lambda=0,biasadj=TRUE,xreg=MEN_XREG)
|
||||||
MOD_US_MEN <- auto.arima(TS_MEN_US,lambda=0,biasadj=TRUE,xreg=MEN_XREG)
|
MOD_US_MEN <- auto.arima(TS_MEN_US,lambda=0,biasadj=TRUE,xreg=MEN_XREG)
|
||||||
MOD_US_MEN_2016 <- auto.arima(TS_MEN_US_2016,lambda=0,biasadj=TRUE,xreg=MEN_XREG_2016)
|
MOD_US_MEN_2016 <- auto.arima(TS_MEN_US_2016,lambda=0,biasadj=TRUE,xreg=MEN_XREG_2016)
|
||||||
|
|
||||||
@ -73,3 +77,40 @@ saveRDS(MOD_US_MEN_2016,paste0(SAVE_LOC_MOD,"ARIMA_US_Men_Mortality_by_Age_2016.
|
|||||||
saveRDS(MOD_LIN_WOMEN_2016,paste0(SAVE_LOC_MOD,"ARIMA_Lincoln_Women_Mortality_by_Age_2016.Rds"))
|
saveRDS(MOD_LIN_WOMEN_2016,paste0(SAVE_LOC_MOD,"ARIMA_Lincoln_Women_Mortality_by_Age_2016.Rds"))
|
||||||
saveRDS(MOD_LIN_MEN_2016,paste0(SAVE_LOC_MOD,"ARIMA_Lincoln_Men_Mortality_by_Age_2016.Rds"))
|
saveRDS(MOD_LIN_MEN_2016,paste0(SAVE_LOC_MOD,"ARIMA_Lincoln_Men_Mortality_by_Age_2016.Rds"))
|
||||||
|
|
||||||
|
###Mortality ARIMA results save
|
||||||
|
|
||||||
|
if(!exists("SAVE_LOC_ARIMA_FIGURES")){SAVE_LOC_ARIMA_FIGURES <-"./Results/Mortality_ARIMA/"}
|
||||||
|
dir.create(SAVE_LOC_ARIMA_FIGURES, recursive = TRUE, showWarnings = FALSE)
|
||||||
|
################Figures
|
||||||
|
png(paste0(SAVE_LOC_ARIMA_FIGURES,"US_Men_Mortality_ARIMA_Residual_Checks.png"), res = 600, height = 12, width=16, units = "in")
|
||||||
|
checkresiduals(MOD_US_MEN)
|
||||||
|
dev.off()
|
||||||
|
|
||||||
|
png(paste0(SAVE_LOC_ARIMA_FIGURES,"US_Women_Mortality_ARIMA_Residual_Checks.png"), res = 600, height = 12, width=16, units = "in")
|
||||||
|
checkresiduals(MOD_US_WOMEN)
|
||||||
|
dev.off()
|
||||||
|
|
||||||
|
png(paste0(SAVE_LOC_ARIMA_FIGURES,"Lincoln_County_Men_Mortality_ARIMA_Residual_Checks.png"), res = 600, height = 12, width=16, units = "in")
|
||||||
|
checkresiduals(MOD_LIN_MEN)
|
||||||
|
dev.off()
|
||||||
|
|
||||||
|
png(paste0(SAVE_LOC_ARIMA_FIGURES,"Lincoln_County_Women_Mortality_ARIMA_Residual_Checks.png"), res = 600, height = 12, width=16, units = "in")
|
||||||
|
checkresiduals(MOD_LIN_WOMEN)
|
||||||
|
dev.off()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
##################Tables
|
||||||
|
DICT <- list("ar1"="Autoregressive (1 Year)","ar2"="Autoregressive (2 Year)","ma1"="Moving Average (1 Year)","ma2"="Moving Average (2 Year)","WUPI"="Pandemic Index","L_WUPI"="Pandemic Index (1 Year)","intercept"="Average Mortality","Women Mortality Rate"="TS\\_WOMEN\\_US" )
|
||||||
|
NOTE <- list("The US Mortality rate variable is tied to the sex of the given model.","Lambda set to zero for all model which log-transforms the results.")
|
||||||
|
FILE_NAME <- "Mortality_ARIMA_Tables"
|
||||||
|
REG_TABLE_LOC <- paste0(SAVE_LOC_ARIMA_FIGURES,FILE_NAME,".tex")
|
||||||
|
sink(REG_TABLE_LOC)
|
||||||
|
cat("\\documentclass[border=0pt]{article}","\n","\\pagestyle{empty}","\n","\\usepackage{booktabs,dcolumn}","\n","\\begin{document}")
|
||||||
|
texreg(l=list(MOD_US_WOMEN,MOD_US_MEN,MOD_LIN_WOMEN,MOD_LIN_MEN),digits=4,custom.model.names=c("\\textbf{U.S. Women}","\\textbf{U.S. Men}","\\textbf{Lincoln Women}","\\textbf{Lincoln Men}"),table=FALSE,use.packages=FALSE,booktabs=TRUE,dcolumn=TRUE,caption.above=TRUE)
|
||||||
|
cat("\n","\\end{document}")
|
||||||
|
sink()
|
||||||
|
system(paste0("pdflatex ",REG_TABLE_LOC))
|
||||||
|
system(paste0("pdfcrop --margins '5 5 5 5' ",FILE_NAME,".pdf ",SAVE_LOC_ARIMA_FIGURES,FILE_NAME,".pdf"))
|
||||||
|
file.remove(list.files(pattern=FILE_NAME))
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user