diff --git a/Data/API_CENSUS_CODES.csv b/Data/API_CENSUS_CODES.csv new file mode 100644 index 0000000..9ecdd5a --- /dev/null +++ b/Data/API_CENSUS_CODES.csv @@ -0,0 +1,50 @@ +#Codes collected from https://api.census.gov/data/2019/acs/acs1/variables.html to map to +Code,Sex,Min_Age,Max_Age +B01001_002E,"Male",0,Inf +B01001_003E,"Male",0,4 +B01001_004E,"Male",5,9 +B01001_005E,"Male",10,14 +B01001_006E,"Male",15,17 +B01001_007E,"Male",18,18 +B01001_008E,"Male",20,20 +B01001_009E,"Male",21,21 +B01001_010E,"Male",22,24 +B01001_011E,"Male",25,29 +B01001_012E,"Male",30,34 +B01001_013E,"Male",35,39 +B01001_014E,"Male",40,44 +B01001_015E,"Male",45,49 +B01001_016E,"Male",50,54 +B01001_017E,"Male",55,59 +B01001_018E,"Male",60,60 +B01001_019E,"Male",62,64 +B01001_020E,"Male",65,65 +B01001_021E,"Male",67,69 +B01001_022E,"Male",70,74 +B01001_023E,"Male",75,79 +B01001_024E,"Male",80,84 +B01001_025E,"Male",85,Inf +B01001_026E,"Female",0,Inf +B01001_027E,"Female",0,4 +B01001_028E,"Female",5,9 +B01001_029E,"Female",10,14 +B01001_030E,"Female",15,17 +B01001_031E,"Female",18,18 +B01001_032E,"Female",20,20 +B01001_033E,"Female",21,21 +B01001_034E,"Female",22,24 +B01001_035E,"Female",25,29 +B01001_036E,"Female",30,34 +B01001_037E,"Female",35,39 +B01001_038E,"Female",40,44 +B01001_039E,"Female",45,49 +B01001_040E,"Female",50,54 +B01001_041E,"Female",55,59 +B01001_042E,"Female",60,60 +B01001_043E,"Female",62,64 +B01001_044E,"Female",65,65 +B01001_045E,"Female",67,69 +B01001_046E,"Female",70,74 +B01001_047E,"Female",75,79 +B01001_048E,"Female",80,84 +B01001_049E,"Female",85,Inf diff --git a/Zip_Code.r b/Zip_Code.r index 12c1223..67f2621 100644 --- a/Zip_Code.r +++ b/Zip_Code.r @@ -1,39 +1,34 @@ library(tidyverse) library(tidycensus) library(zipcodeR) -KEY <- '30e13ab22563318ff59286e433099f4174d4edd4' -TRACTS <- get_tracts(search_city('Diamondville','WY')$zipcode) %>% full_join(get_tracts(search_city('Kemmerer','WY')$zipcode)) -TRACTS +install.packages("zipcodeR") +install.packages("units") + + +#install.packages("terra") census_api_key(KEY, install = TRUE) -vars <- c("P2_002N") -get_decennial(geography="tract",variables=vars,state='WY',county='lincoln',GEOID='56023978400') -vars <- c("B01001_004","B01001_005") +KEY <- '30e13ab22563318ff59286e433099f4174d4edd4' +#Ex +TRACTS <-get_tracts(search_city('Kemmerer','WY')$zipcode) %>% full_join(get_tracts(search_city('Diamondville','WY')$zipcode)) +get_decennial(geography="tract",variables=vars,state='WY',county='lincoln') + +c('B01002_001E','B01002_002E','B01002_003E') +c('Median_Age','Median_Age_Male','Median_Age_Female') + + + + get_acs(geography="tract",variables=vars,state='WY',county='lincoln',GEOID='56023978400') ######MALE #Variable names from: https://api.census.gov/data/2019/acs/acs1/variables.html -VARS <-c( -#Under_Five -'B01001_003E', -#5-9 -'B01001_004E', -#10-14 -'B01001_005E', -#15-17 -'B01001_006E', -#18-19 -'B01001_007E', -#20 -'B01001_008E', -#21 -'B01001_009E', -#22-24 -'B01001_010E', -#25-29 -'B01001_011E', -#85+ -'B01001_025E') +sapply(1:25,function(x){paste0("B01001_00",x,"E")}) +c(seq(0,15,by=5),18,20,21,22,seq(25,85,by=5)) +c(seq(4,17,by=5),17,19,20,21,24,seq(29,84,by=5)) +CODES <- read_csv("Data/API_CENSUS_CODES.csv") %>% mutate(Med_Age=(Min_Age+Max_Age)/2) +VARS <- CODES$Code + #Testing age Comparison between the two TEMP <- get_acs(geography="tract",variables=VARS,state='WY',county='lincoln') KEM <- TEMP %>% filter(GEOID=='56023978400')