Added scripts for sensitivity analysis

This commit is contained in:
Alex Gebben Work 2025-12-09 14:22:54 -07:00
parent e1fc4206b4
commit 56bb7e7191
4 changed files with 369 additions and 1 deletions

View File

@ -108,7 +108,7 @@ SINGLE_SIM <- function(DEMO,BIRTH_DATA,ST_YEAR,YEARS_AHEAD,MIGRATION_ARIMA_MODEL
NCORES <- detectCores()-1 NCORES <- detectCores()-1
BATCH_SIZE <- NCORES*10 BATCH_SIZE <- NCORES*10
TOTAL_SIMULATIONS <- 10^6 TOTAL_SIMULATIONS <- 10^5
N_RUNS <-ceiling(TOTAL_SIMULATIONS/BATCH_SIZE ) N_RUNS <-ceiling(TOTAL_SIMULATIONS/BATCH_SIZE )
SIM_RES_FILE <- paste0(RES_SIM_DIR,"Kemmerer_2016_Simulation.csv") SIM_RES_FILE <- paste0(RES_SIM_DIR,"Kemmerer_2016_Simulation.csv")

View File

@ -0,0 +1,160 @@
#####Packages
library(tidyverse) #Cleaning data
library(fixest) #Estimating a model of birth rates, to provide variance in the birth rate Monte Carlo using a fixed effect model.
library(forecast) #Fore ARIMA migration simulations
library(parallel)
library(uuid) #To add a index to each batch
####If the prelimnary data needs to be reloaded run the supplied bash script to download, process, and generate all needed data sets for the Monte Carlo population Simulation. Otherwise skip this step to save time
RELOAD_DATA <- FALSE
if(RELOAD_DATA){system("bash Prelim_Process.sh")}
#Load custom functions needed for the simulation
source("Scripts/Load_Custom_Functions/Migration_Simulation_Functions.r")
source("Scripts/Load_Custom_Functions/Birth_Simulation_Functions.r")
source("Scripts/Load_Custom_Functions/Increment_Data_Year.r")
source("Scripts/Load_Custom_Functions/Single_Age_Mortality_Trend_Simulation.r")
source("Scripts/Load_Custom_Functions/Induced_Migration_Functions.r")
#######Preliminary Model Inputs
YEARS_AHEAD <- 41
ST_YEAR <- 2025
################################Load Data
DEMO <- readRDS("Data/Intermediate_Inputs/Starting_Demographic_Data_Sets_of_Monte_Carlo/2024_Starting_Kemmerer_Diamondville_Demographics_Matrix.Rds")
BIRTH_MOD <- readRDS("Data/Intermediate_Inputs/Birth_Regressions/Birth_Regression.Rds")
#Must add region as a factor with multiple levels for predict to work. Seems to check for multiple levels although that is not needed econometrics.
BIRTH_DATA <- readRDS("Data/Intermediate_Inputs/Birth_Regressions/Regression_Data/Birth_Simulation_Key_Starting_Points.Rds") %>% mutate(Region=factor(Region)) %>% filter(KEM==1,Year==2023) %>% mutate(Year=2024)
MIGRATION_ARIMA <- readRDS("Data/Intermediate_Inputs/Migration_ARIMA_Models/Kemmerer_Diamondville_Net_Migration_ARIMA.Rds")
MIGRATION_ODDS <- readRDS("Data/Intermediate_Inputs/Migration_Trends/Migration_Age_Probability_Zero_to_85.Rds")
####
OPERATORS <- readRDS("Data/Cleaned_Data/TerraPower_Impact/Operating_Worker_Related_Migration.Rds")
CONSTRUCTION <- readRDS("Data/Cleaned_Data/TerraPower_Impact/Construction_Related_Migration.Rds")
OPERATOR_LIN_MIGRATION <- OPERATORS %>% pull("Operator_Emp_Migrated")
CONSTRUCTION_LIN_MIGRATION <- CONSTRUCTION %>% pull("Construction_Emp_Migrated")
INDUCED_MIGRATION_MULTIPLIERS <- readRDS("Data/Cleaned_Data/TerraPower_Impact/Induced_Jobs.Rds")
##############
#Data for death rate trends
SINGLE_AGE_MODS <- readRDS("Data/Intermediate_Inputs/Mortality_Regression_Data/Single_Sex_Age_Time_Series_Regression.Rds")
BOUNDS <- readRDS("Data/Intermediate_Inputs/Mortality_Regression_Data/Single_Sex_Age_Bounds_for_Predictions.Rds")
MAX_MALE <- BOUNDS %>% filter(Sex=='Male') %>% pull(MAX_RATE)
MIN_MALE <- BOUNDS %>% filter(Sex=='Male') %>% pull(MIN_RATE)
MAX_FEMALE <- BOUNDS %>% filter(Sex=='Female') %>% pull(MAX_RATE)
MIN_FEMALE <- BOUNDS %>% filter(Sex=='Female') %>% pull(MIN_RATE)
MIN_GAP <- BOUNDS %>% filter(Sex=='Male') %>% pull(MIN_MALE_FEMALE_GAP)
MAX_GAP <- BOUNDS %>% filter(Sex=='Male') %>% pull(MAX_MALE_FEMALE_GAP)
BASELINE_AGE_ADJUST_MEN <- readRDS("Data/Cleaned_Data/Mortality_Data/RDS/Single_Sex_Age_Population_in_2000.Rds") %>% filter(Sex=='Male') %>% pull(Percent_of_Population)
BASELINE_AGE_ADJUST_WOMEN <- readRDS("Data/Cleaned_Data/Mortality_Data/RDS/Single_Sex_Age_Population_in_2000.Rds") %>% filter(Sex=='Female') %>% pull(Percent_of_Population)
#Adjust to just women popualtion (Not all population percent
BASELINE_AGE_ADJUST_WOMEN <- BASELINE_AGE_ADJUST_WOMEN/sum(BASELINE_AGE_ADJUST_WOMEN )
BASELINE_AGE_ADJUST_MEN <- BASELINE_AGE_ADJUST_MEN/ sum(BASELINE_AGE_ADJUST_MEN )
MOD_MEN_ALL <- readRDS("Data/Intermediate_Inputs/Age_Mortality_ARIMA_Models/ARIMA_US_Men_Mortality_by_Age.Rds")
MOD_WOMEN_ALL <- readRDS("Data/Intermediate_Inputs/Age_Mortality_ARIMA_Models/ARIMA_US_Women_Mortality_by_Age.Rds")
MOD_LIN_MEN <- readRDS("Data/Intermediate_Inputs/Age_Mortality_ARIMA_Models/ARIMA_Lincoln_Men_Mortality_by_Age.Rds")
MOD_LIN_WOMEN <- readRDS("Data/Intermediate_Inputs/Age_Mortality_ARIMA_Models/ARIMA_Lincoln_Women_Mortality_by_Age.Rds")
XREG <- cbind(rep(0.0001,YEARS_AHEAD+1),rep(0.0001,YEARS_AHEAD+1)) #Empty data set to simulate in the future
XREG <- ts(XREG,start=ST_YEAR,frequency=1)
SIMULATE_MORTALITY_RATE_TRENDS <- function(){
SIMULATED_MORTALITY_DATA_SET <- MAKE_EMPTY(ST_YEAR,ST_YEAR+YEARS_AHEAD,MOD_LIN_MEN,MOD_LIN_WOMEN,MOD_MEN_ALL,MOD_WOMEN_ALL,XREG)
MORTALITY_SIMULATION <- AGE_DIST(SINGLE_AGE_MODS,SIMULATED_MORTALITY_DATA_SET ,MAX_MALE,MAX_FEMALE,MIN_MALE,MIN_FEMALE,MAX_GAP,MIN_GAP,BASELINE_AGE_ADJUST_MEN,BASELINE_AGE_ADJUST_WOMEN)
return(MORTALITY_SIMULATION )
}
#####################START YEAR BY SIMULATIONS
#CURRENT_YEARS_AHEAD=1;CURRENT_SIM_NUM <- 1;MORTALITY_SIMULATION <- SIMULATE_MORTALITY_RATE_TRENDS()
SINGLE_YEAR_SIM <- function(DEMO,BIRTH_DATA,CURRENT_YEARS_AHEAD,MORTALITY_SIMULATION,NET_MIGRATION){
ORIG_DEMO <- DEMO
DEMO <- DEMOGRAPHICS_AFTER_MIGRATION(DEMO, NET_MIGRATION,MIGRATION_ODDS )
TOTAL_MIGRATION <- sum(DEMO-ORIG_DEMO)
BIRTH_DATA$Year <- BIRTH_DATA$Year+1
BIRTH_DATA$Lag_Two_Births <- BIRTH_DATA$Lag_Births
BIRTH_DATA$Lag_Births <- BIRTH_DATA$Births
BIRTH_DATA$Births <- NA
##We grab one year earlier than the window because they are one year older this year. Because the ages are from 0-85, row 18 is year 17, but one year is added making it 18 years in the current year. The birth windows are 18-28 for women and 18-30 for men.
BIRTH_DATA$Min_Birth_Group <- min(sum(DEMO[18:30,1]),sum(DEMO[18:28,2]))
NEW_BORNS <- BIRTH_SIM(BIRTH_MOD,BIRTH_DATA)
TOTAL_BIRTHS <- sum(NEW_BORNS)
BIRTH_DATA[,"Births"] <- TOTAL_BIRTHS
DEMO <- INCREMENT_AGES(DEMO,NEW_BORNS)
MORTALITY_SIMULATION
MALE_DEATHS <- sapply(1:86,function(x){rbinom(1,DEMO[x,1],MORTALITY_SIMULATION[[1]][x,CURRENT_YEARS_AHEAD])})
FEMALE_DEATHS <- sapply(1:86,function(x){rbinom(1,DEMO[x,2],MORTALITY_SIMULATION[[2]][x,CURRENT_YEARS_AHEAD])})
MALE_DEATHS <- ifelse(MALE_DEATHS>=DEMO[,1],DEMO[,1],MALE_DEATHS)
FEMALE_DEATHS <- ifelse(FEMALE_DEATHS>=DEMO[,1],DEMO[,1],FEMALE_DEATHS)
TOTAL_DEATHS <- sum(MALE_DEATHS+FEMALE_DEATHS)
DEMO[,"Num_Male"] <- DEMO[,"Num_Male"] -MALE_DEATHS
DEMO[,"Num_Female"] <- DEMO[,"Num_Female"] -FEMALE_DEATHS
#List of values needed for the next run or for reporting a result
TOTAL_POP <- sum(DEMO)
return(list(DEMO,BIRTH_DATA,c(TOTAL_POP,TOTAL_BIRTHS,TOTAL_DEATHS,TOTAL_MIGRATION)))
}
MIGRATION_ARIMA_MODEL <- MIGRATION_ARIMA
#DEMO,BIRTH_DATA,ST_YEAR,YEARS_AHEAD,MIGRATION_ARIMA_MODEL,OPERATOR_TOTAL,CONSTRUCTION_TOTAL,MIGRATION_MULTIPLIERS
CONSTRUCTION_MIGRATION <- CONSTRUCTION_LIN_MIGRATION
MIGRATION_MULTIPLIERS <- INDUCED_MIGRATION_MULTIPLIERS
OPERATOR_MIGRATION <- OPERATOR_LIN_MIGRATION
SINGLE_SIM <- function(DEMO,BIRTH_DATA,ST_YEAR,YEARS_AHEAD,MIGRATION_ARIMA_MODEL,OPERATOR_MIGRATION,CONSTRUCTION_MIGRATION,MIGRATION_MULTIPLIERS ){
TERRA_POWER_EFFECT <- rep(0,YEARS_AHEAD)
OPERATOR_MIGRATION <- LOCAL_WORK_ADJ(OPERATOR_MIGRATION ,0.85) #Assume between 85%-100% operators live in Kemmerer
CONSTRUCTION_MIGRATION <- LOCAL_WORK_ADJ(CONSTRUCTION_MIGRATION,0.41) #Assume between 41%-100% operators live in Kemmerer
CONSTRUCTION_MIGRATION[7] <- CONSTRUCTION_MIGRATION[7] - sum(CONSTRUCTION_MIGRATION )
CONSTRUCTION_POPULATION_ADDED <- cumsum(CONSTRUCTION_MIGRATION)
PERMANENT_TERRAPOWER_MIGRATION <- INDUCED_SIMULATION(CONSTRUCTION_MIGRATION,OPERATOR_MIGRATION,MIGRATION_MULTIPLIERS)+OPERATOR_MIGRATION
###############NOTE NEED TO USE THIS AT END TO ADJUST THE RESULTS WHILE LEAVING THE DEMOGRAPHIC MATRIX
TERRA_POWER_EFFECT[1:7] <- TERRA_POWER_EFFECT[1:7]+CONSTRUCTION_MIGRATION
MIGRATION_SIM_VALUES <- round(as.vector(simulate(nsim=YEARS_AHEAD,MIGRATION_ARIMA_MODEL))+TERRA_POWER_EFFECT)
#The runif applies a downshift ranging from the historic decline rate all the way to the Lincoln rate applied in the model
FINAL_REPORT_VALUES <- matrix(NA,ncol=6,nrow=YEARS_AHEAD)
colnames(FINAL_REPORT_VALUES ) <- c("Sim_UUID","Year","Population","Births","Deaths","Net_Migration")
FINAL_REPORT_VALUES[,1] <- UUIDgenerate()
for(i in 1:YEARS_AHEAD){
C_YEAR <- ST_YEAR+i-1
C_RES <-SINGLE_YEAR_SIM(DEMO,BIRTH_DATA,i,SIMULATE_MORTALITY_RATE_TRENDS(),MIGRATION_SIM_VALUES[i])
DEMO <- C_RES[[1]]
BIRTH_DATA <- C_RES[[2]]
FINAL_REPORT_VALUES[i,-1] <- c(C_YEAR,C_RES[[3]])
}
FINAL_REPORT_VALUES[1:7,3] <- as.numeric(FINAL_REPORT_VALUES[1:7,3])+CONSTRUCTION_POPULATION_ADDED
FINAL_REPORT_VALUES[1:7,6] <- as.numeric(FINAL_REPORT_VALUES[1:7,6]) +CONSTRUCTION_MIGRATION
return(FINAL_REPORT_VALUES)
}
if(!exists("RES_DIR")){RES_DIR<- "./Results/"}
if(!exists("RES_SIM_DIR")){RES_SIM_DIR <- paste0(RES_DIR,"Simulations/")}
dir.create(RES_SIM_DIR, recursive = TRUE, showWarnings = FALSE)
NCORES <- detectCores()-1
BATCH_SIZE <- NCORES*10
TOTAL_SIMULATIONS <- 10^5
N_RUNS <-ceiling(TOTAL_SIMULATIONS/BATCH_SIZE )
SIM_RES_FILE <- paste0(RES_SIM_DIR,"Kemmerer_2024_Simulation_County_Migration_Rate.csv")
NEW_RES_FILE <- !file.exists(SIM_RES_FILE)
OPERATOR_LIN_MIGRATION <- OPERATORS %>% pull("Operator_Emp_Migrated")
CONSTRUCTION_LIN_MIGRATION <- CONSTRUCTION %>% pull("Construction_Emp_Migrated")
for(i in 1:N_RUNS){
# MIGRATION_MATRIX <- simulate(nsim=BATCH_SIZE,MIGRATION_ARIMA,n=YEARS_AHEAD)
MIGRATION_MATRIX <- do.call(cbind, mclapply(1:BATCH_SIZE,function(x)(as.vector(simulate(nsim=YEARS_AHEAD,MIGRATION_ARIMA) )),mc.cores = detectCores()-1))
# rownames(MIGRATION_MATRIX) <- ST_YEAR:(ST_YEAR+YEARS_AHEAD-1)
# colnames(MIGRATION_MATRIX) <- 1:BATCH_SIZE
#SINGLE_SIM(DEMO,BIRTH_DATA,ST_YEAR,YEARS_AHEAD,MIGRATION_ARIMA,OPERATOR_LIN_MIGRATION,CONSTRUCTION_LIN_MIGRATION,INDUCED_MIGRATION_MULTIPLIERS)
try(RES <- do.call(rbind,mclapply(1:BATCH_SIZE,function(x){SINGLE_SIM(DEMO,BIRTH_DATA,ST_YEAR,YEARS_AHEAD,MIGRATION_ARIMA,OPERATOR_LIN_MIGRATION,CONSTRUCTION_LIN_MIGRATION,INDUCED_MIGRATION_MULTIPLIERS)},mc.cores=NCORES)))
if(exists("RES")){
RES <- as.data.frame(RES)
RES[,-1] <- as.numeric(as.matrix(RES[,-1]))
if(NEW_RES_FILE & i==1){write_csv(RES,SIM_RES_FILE)}else {write_csv(RES,SIM_RES_FILE,col_names=FALSE,append=TRUE)}
rm(RES)
}
}

View File

@ -0,0 +1,160 @@
#####Packages
library(tidyverse) #Cleaning data
library(fixest) #Estimating a model of birth rates, to provide variance in the birth rate Monte Carlo using a fixed effect model.
library(forecast) #Fore ARIMA migration simulations
library(parallel)
library(uuid) #To add a index to each batch
####If the prelimnary data needs to be reloaded run the supplied bash script to download, process, and generate all needed data sets for the Monte Carlo population Simulation. Otherwise skip this step to save time
RELOAD_DATA <- FALSE
if(RELOAD_DATA){system("bash Prelim_Process.sh")}
#Load custom functions needed for the simulation
source("Scripts/Load_Custom_Functions/Migration_Simulation_Functions.r")
source("Scripts/Load_Custom_Functions/Birth_Simulation_Functions.r")
source("Scripts/Load_Custom_Functions/Increment_Data_Year.r")
source("Scripts/Load_Custom_Functions/Single_Age_Mortality_Trend_Simulation.r")
source("Scripts/Load_Custom_Functions/Induced_Migration_Functions.r")
#######Preliminary Model Inputs
YEARS_AHEAD <- 41
ST_YEAR <- 2025
################################Load Data
DEMO <- readRDS("Data/Intermediate_Inputs/Starting_Demographic_Data_Sets_of_Monte_Carlo/2024_Starting_Kemmerer_Diamondville_Demographics_Matrix.Rds")
BIRTH_MOD <- readRDS("Data/Intermediate_Inputs/Birth_Regressions/Birth_Regression.Rds")
#Must add region as a factor with multiple levels for predict to work. Seems to check for multiple levels although that is not needed econometrics.
BIRTH_DATA <- readRDS("Data/Intermediate_Inputs/Birth_Regressions/Regression_Data/Birth_Simulation_Key_Starting_Points.Rds") %>% mutate(Region=factor(Region)) %>% filter(KEM==1,Year==2023) %>% mutate(Year=2024)
MIGRATION_ARIMA <- readRDS("Data/Intermediate_Inputs/Migration_ARIMA_Models/Kemmerer_Diamondville_Net_Migration_ARIMA.Rds")
MIGRATION_ODDS <- readRDS("Data/Intermediate_Inputs/Migration_Trends/Migration_Age_Probability_Zero_to_85.Rds")
####
OPERATORS <- readRDS("Data/Cleaned_Data/TerraPower_Impact/Operating_Worker_Related_Migration.Rds")
CONSTRUCTION <- readRDS("Data/Cleaned_Data/TerraPower_Impact/Construction_Related_Migration.Rds")
OPERATOR_LIN_MIGRATION <- OPERATORS %>% pull("Operator_Emp_Migrated")
CONSTRUCTION_LIN_MIGRATION <- CONSTRUCTION %>% pull("Construction_Emp_Migrated")
INDUCED_MIGRATION_MULTIPLIERS <- readRDS("Data/Cleaned_Data/TerraPower_Impact/Induced_Jobs.Rds")
##############
#Data for death rate trends
SINGLE_AGE_MODS <- readRDS("Data/Intermediate_Inputs/Mortality_Regression_Data/Single_Sex_Age_Time_Series_Regression.Rds")
BOUNDS <- readRDS("Data/Intermediate_Inputs/Mortality_Regression_Data/Single_Sex_Age_Bounds_for_Predictions.Rds")
MAX_MALE <- BOUNDS %>% filter(Sex=='Male') %>% pull(MAX_RATE)
MIN_MALE <- BOUNDS %>% filter(Sex=='Male') %>% pull(MIN_RATE)
MAX_FEMALE <- BOUNDS %>% filter(Sex=='Female') %>% pull(MAX_RATE)
MIN_FEMALE <- BOUNDS %>% filter(Sex=='Female') %>% pull(MIN_RATE)
MIN_GAP <- BOUNDS %>% filter(Sex=='Male') %>% pull(MIN_MALE_FEMALE_GAP)
MAX_GAP <- BOUNDS %>% filter(Sex=='Male') %>% pull(MAX_MALE_FEMALE_GAP)
BASELINE_AGE_ADJUST_MEN <- readRDS("Data/Cleaned_Data/Mortality_Data/RDS/Single_Sex_Age_Population_in_2000.Rds") %>% filter(Sex=='Male') %>% pull(Percent_of_Population)
BASELINE_AGE_ADJUST_WOMEN <- readRDS("Data/Cleaned_Data/Mortality_Data/RDS/Single_Sex_Age_Population_in_2000.Rds") %>% filter(Sex=='Female') %>% pull(Percent_of_Population)
#Adjust to just women popualtion (Not all population percent
BASELINE_AGE_ADJUST_WOMEN <- BASELINE_AGE_ADJUST_WOMEN/sum(BASELINE_AGE_ADJUST_WOMEN )
BASELINE_AGE_ADJUST_MEN <- BASELINE_AGE_ADJUST_MEN/ sum(BASELINE_AGE_ADJUST_MEN )
MOD_MEN_ALL <- readRDS("Data/Intermediate_Inputs/Age_Mortality_ARIMA_Models/ARIMA_US_Men_Mortality_by_Age.Rds")
MOD_WOMEN_ALL <- readRDS("Data/Intermediate_Inputs/Age_Mortality_ARIMA_Models/ARIMA_US_Women_Mortality_by_Age.Rds")
MOD_LIN_MEN <- readRDS("Data/Intermediate_Inputs/Age_Mortality_ARIMA_Models/ARIMA_Lincoln_Men_Mortality_by_Age.Rds")
MOD_LIN_WOMEN <- readRDS("Data/Intermediate_Inputs/Age_Mortality_ARIMA_Models/ARIMA_Lincoln_Women_Mortality_by_Age.Rds")
XREG <- cbind(rep(0.0001,YEARS_AHEAD+1),rep(0.0001,YEARS_AHEAD+1)) #Empty data set to simulate in the future
XREG <- ts(XREG,start=ST_YEAR,frequency=1)
SIMULATE_MORTALITY_RATE_TRENDS <- function(){
SIMULATED_MORTALITY_DATA_SET <- MAKE_EMPTY(ST_YEAR,ST_YEAR+YEARS_AHEAD,MOD_LIN_MEN,MOD_LIN_WOMEN,MOD_MEN_ALL,MOD_WOMEN_ALL,XREG)
MORTALITY_SIMULATION <- AGE_DIST(SINGLE_AGE_MODS,SIMULATED_MORTALITY_DATA_SET ,MAX_MALE,MAX_FEMALE,MIN_MALE,MIN_FEMALE,MAX_GAP,MIN_GAP,BASELINE_AGE_ADJUST_MEN,BASELINE_AGE_ADJUST_WOMEN)
return(MORTALITY_SIMULATION )
}
#####################START YEAR BY SIMULATIONS
#CURRENT_YEARS_AHEAD=1;CURRENT_SIM_NUM <- 1;MORTALITY_SIMULATION <- SIMULATE_MORTALITY_RATE_TRENDS()
SINGLE_YEAR_SIM <- function(DEMO,BIRTH_DATA,CURRENT_YEARS_AHEAD,MORTALITY_SIMULATION,NET_MIGRATION){
ORIG_DEMO <- DEMO
DEMO <- DEMOGRAPHICS_AFTER_MIGRATION(DEMO, NET_MIGRATION,MIGRATION_ODDS )
TOTAL_MIGRATION <- sum(DEMO-ORIG_DEMO)
BIRTH_DATA$Year <- BIRTH_DATA$Year+1
BIRTH_DATA$Lag_Two_Births <- BIRTH_DATA$Lag_Births
BIRTH_DATA$Lag_Births <- BIRTH_DATA$Births
BIRTH_DATA$Births <- NA
##We grab one year earlier than the window because they are one year older this year. Because the ages are from 0-85, row 18 is year 17, but one year is added making it 18 years in the current year. The birth windows are 18-28 for women and 18-30 for men.
BIRTH_DATA$Min_Birth_Group <- min(sum(DEMO[18:30,1]),sum(DEMO[18:28,2]))
NEW_BORNS <- BIRTH_SIM(BIRTH_MOD,BIRTH_DATA)
TOTAL_BIRTHS <- sum(NEW_BORNS)
BIRTH_DATA[,"Births"] <- TOTAL_BIRTHS
DEMO <- INCREMENT_AGES(DEMO,NEW_BORNS)
MORTALITY_SIMULATION
MALE_DEATHS <- sapply(1:86,function(x){rbinom(1,DEMO[x,1],MORTALITY_SIMULATION[[1]][x,CURRENT_YEARS_AHEAD])})
FEMALE_DEATHS <- sapply(1:86,function(x){rbinom(1,DEMO[x,2],MORTALITY_SIMULATION[[2]][x,CURRENT_YEARS_AHEAD])})
MALE_DEATHS <- ifelse(MALE_DEATHS>=DEMO[,1],DEMO[,1],MALE_DEATHS)
FEMALE_DEATHS <- ifelse(FEMALE_DEATHS>=DEMO[,1],DEMO[,1],FEMALE_DEATHS)
TOTAL_DEATHS <- sum(MALE_DEATHS+FEMALE_DEATHS)
DEMO[,"Num_Male"] <- DEMO[,"Num_Male"] -MALE_DEATHS
DEMO[,"Num_Female"] <- DEMO[,"Num_Female"] -FEMALE_DEATHS
#List of values needed for the next run or for reporting a result
TOTAL_POP <- sum(DEMO)
return(list(DEMO,BIRTH_DATA,c(TOTAL_POP,TOTAL_BIRTHS,TOTAL_DEATHS,TOTAL_MIGRATION)))
}
MIGRATION_ARIMA_MODEL <- MIGRATION_ARIMA
#DEMO,BIRTH_DATA,ST_YEAR,YEARS_AHEAD,MIGRATION_ARIMA_MODEL,OPERATOR_TOTAL,CONSTRUCTION_TOTAL,MIGRATION_MULTIPLIERS
CONSTRUCTION_MIGRATION <- CONSTRUCTION_LIN_MIGRATION
MIGRATION_MULTIPLIERS <- INDUCED_MIGRATION_MULTIPLIERS
OPERATOR_MIGRATION <- OPERATOR_LIN_MIGRATION
SINGLE_SIM <- function(DEMO,BIRTH_DATA,ST_YEAR,YEARS_AHEAD,MIGRATION_ARIMA_MODEL,OPERATOR_MIGRATION,CONSTRUCTION_MIGRATION,MIGRATION_MULTIPLIERS ){
TERRA_POWER_EFFECT <- rep(0,YEARS_AHEAD)
OPERATOR_MIGRATION <- LOCAL_WORK_ADJ(OPERATOR_MIGRATION ,0.85) #Assume between 85%-100% operators live in Kemmerer
CONSTRUCTION_MIGRATION <- LOCAL_WORK_ADJ(CONSTRUCTION_MIGRATION,0.41) #Assume between 41%-100% operators live in Kemmerer
CONSTRUCTION_MIGRATION[7] <- CONSTRUCTION_MIGRATION[7] - sum(CONSTRUCTION_MIGRATION )
CONSTRUCTION_POPULATION_ADDED <- cumsum(CONSTRUCTION_MIGRATION)
PERMANENT_TERRAPOWER_MIGRATION <- INDUCED_SIMULATION(CONSTRUCTION_MIGRATION,OPERATOR_MIGRATION,MIGRATION_MULTIPLIERS)+OPERATOR_MIGRATION
###############NOTE NEED TO USE THIS AT END TO ADJUST THE RESULTS WHILE LEAVING THE DEMOGRAPHIC MATRIX
TERRA_POWER_EFFECT[1:7] <- TERRA_POWER_EFFECT[1:7]+CONSTRUCTION_MIGRATION
MIGRATION_SIM_VALUES <- round(as.vector(simulate(nsim=YEARS_AHEAD,MIGRATION_ARIMA_MODEL))-55+TERRA_POWER_EFFECT)
#The runif applies a downshift ranging from the historic decline rate all the way to the Lincoln rate applied in the model
FINAL_REPORT_VALUES <- matrix(NA,ncol=6,nrow=YEARS_AHEAD)
colnames(FINAL_REPORT_VALUES ) <- c("Sim_UUID","Year","Population","Births","Deaths","Net_Migration")
FINAL_REPORT_VALUES[,1] <- UUIDgenerate()
for(i in 1:YEARS_AHEAD){
C_YEAR <- ST_YEAR+i-1
C_RES <-SINGLE_YEAR_SIM(DEMO,BIRTH_DATA,i,SIMULATE_MORTALITY_RATE_TRENDS(),MIGRATION_SIM_VALUES[i])
DEMO <- C_RES[[1]]
BIRTH_DATA <- C_RES[[2]]
FINAL_REPORT_VALUES[i,-1] <- c(C_YEAR,C_RES[[3]])
}
FINAL_REPORT_VALUES[1:7,3] <- as.numeric(FINAL_REPORT_VALUES[1:7,3])+CONSTRUCTION_POPULATION_ADDED
FINAL_REPORT_VALUES[1:7,6] <- as.numeric(FINAL_REPORT_VALUES[1:7,6]) +CONSTRUCTION_MIGRATION
return(FINAL_REPORT_VALUES)
}
if(!exists("RES_DIR")){RES_DIR<- "./Results/"}
if(!exists("RES_SIM_DIR")){RES_SIM_DIR <- paste0(RES_DIR,"Simulations/")}
dir.create(RES_SIM_DIR, recursive = TRUE, showWarnings = FALSE)
NCORES <- detectCores()-1
BATCH_SIZE <- NCORES*10
TOTAL_SIMULATIONS <- 10^5
N_RUNS <-ceiling(TOTAL_SIMULATIONS/BATCH_SIZE )
SIM_RES_FILE <- paste0(RES_SIM_DIR,"Kemmerer_2024_Simulation_Historic_Migration_Rate.csv")
NEW_RES_FILE <- !file.exists(SIM_RES_FILE)
OPERATOR_LIN_MIGRATION <- OPERATORS %>% pull("Operator_Emp_Migrated")
CONSTRUCTION_LIN_MIGRATION <- CONSTRUCTION %>% pull("Construction_Emp_Migrated")
for(i in 1:N_RUNS){
# MIGRATION_MATRIX <- simulate(nsim=BATCH_SIZE,MIGRATION_ARIMA,n=YEARS_AHEAD)
MIGRATION_MATRIX <- do.call(cbind, mclapply(1:BATCH_SIZE,function(x)(as.vector(simulate(nsim=YEARS_AHEAD,MIGRATION_ARIMA) )),mc.cores = detectCores()-1))
# rownames(MIGRATION_MATRIX) <- ST_YEAR:(ST_YEAR+YEARS_AHEAD-1)
# colnames(MIGRATION_MATRIX) <- 1:BATCH_SIZE
#SINGLE_SIM(DEMO,BIRTH_DATA,ST_YEAR,YEARS_AHEAD,MIGRATION_ARIMA,OPERATOR_LIN_MIGRATION,CONSTRUCTION_LIN_MIGRATION,INDUCED_MIGRATION_MULTIPLIERS)
try(RES <- do.call(rbind,mclapply(1:BATCH_SIZE,function(x){SINGLE_SIM(DEMO,BIRTH_DATA,ST_YEAR,YEARS_AHEAD,MIGRATION_ARIMA,OPERATOR_LIN_MIGRATION,CONSTRUCTION_LIN_MIGRATION,INDUCED_MIGRATION_MULTIPLIERS)},mc.cores=NCORES)))
if(exists("RES")){
RES <- as.data.frame(RES)
RES[,-1] <- as.numeric(as.matrix(RES[,-1]))
if(NEW_RES_FILE & i==1){write_csv(RES,SIM_RES_FILE)}else {write_csv(RES,SIM_RES_FILE,col_names=FALSE,append=TRUE)}
rm(RES)
}
}

48
Run_Simulations.sh Normal file
View File

@ -0,0 +1,48 @@
#Run all simulations as needed. Comment out to skip any. All but the primary results have 10^5 simulations
echo "Starting all model Simulations. This will take a while!!"
#start_time=$(date +%s)
#Rscript 1A_Run_Full_Simulation_2016.r
#echo "Pre-2016 data simulations for benchmark complete! 100k simulations total"
# Your command or script here
#end_time=$(date +%s)
#elapsed_seconds=$((end_time - start_time))
#hours=$((elapsed_seconds / 3600))
#minutes=$(( (elapsed_seconds % 3600) / 60 ))
#seconds=$(( elapsed_seconds % 60 ))
#printf "Execution time: %02d hours, %02d minutes, %02d seconds\n" "$hours" "$minutes" "$seconds"
start_time=$(date +%s)
Rscript 1C_Run_Simulation_Upper_Bound.r
echo "Upper bound migration with county average migration rates complete! 100k simulations total"
end_time=$(date +%s)
elapsed_seconds=$((end_time - start_time))
hours=$((elapsed_seconds / 3600))
minutes=$(( (elapsed_seconds % 3600) / 60 ))
seconds=$(( elapsed_seconds % 60 ))
printf "Execution time: %02d hours, %02d minutes, %02d seconds\n" "$hours" "$minutes" "$seconds"
start_time=$(date +%s)
Rscript 1D_Run_Simulation_Lower_Bound.r
echo "Lower bound migration with Kemmerere average migration rates complete! 100k simulations total"
end_time=$(date +%s)
elapsed_seconds=$((end_time - start_time))
hours=$((elapsed_seconds / 3600))
minutes=$(( (elapsed_seconds % 3600) / 60 ))
seconds=$(( elapsed_seconds % 60 ))
printf "Execution time: %02d hours, %02d minutes, %02d seconds\n" "$hours" "$minutes" "$seconds"
start_time=$(date +%s)
Rscript 1B_Run_Simulation_Lower_Bound.r
echo "Main results with variable migration rates complete! 1 million simulations total"
end_time=$(date +%s)
elapsed_seconds=$((end_time - start_time))
hours=$((elapsed_seconds / 3600))
minutes=$(( (elapsed_seconds % 3600) / 60 ))
seconds=$(( elapsed_seconds % 60 ))
printf "Execution time: %02d hours, %02d minutes, %02d seconds\n" "$hours" "$minutes" "$seconds"