Got test simulation running

This commit is contained in:
Alex Gebben Work 2025-12-02 17:22:14 -07:00
parent e3764b0c37
commit 8e6a4f48c7
5 changed files with 113 additions and 103 deletions

2
.gitignore vendored
View File

@ -2,6 +2,8 @@
#
Data/Raw_Data/Population/
Data/Raw_Data/Demographics/
*.swp
*.png
*.csv
Data/Cleaned_Data/

View File

@ -20,17 +20,14 @@ NUM_SIMULATIONS <- 10^4
ST_YEAR <- 2017
################################Load Data
DEMO <- readRDS("Data/Intermediate_Inputs/Starting_Demographic_Data_Sets_of_Monte_Carlo/2016_Starting_Kemmerer_Diamondville_Demographics_Matrix.Rds")
sum(readRDS("Data/Intermediate_Inputs/Starting_Demographic_Data_Sets_of_Monte_Carlo/2023_Starting_Kemmerer_Diamondville_Demographics_Matrix.Rds"))
BIRTH_MOD <- readRDS("Data/Intermediate_Inputs/Birth_Regressions/Birth_Regression_2016.Rds")
#Must add region as a factor with multiple levels for predict to work. Seems to check for multiple levels although that is not needed econometrics.
BIRTH_DATA <- readRDS("Data/Intermediate_Inputs/Birth_Regressions/Regression_Data/Birth_Simulation_Key_Starting_Points.Rds") %>% mutate(Region=factor(Region)) %>% filter(Region=='Kemmerer & Diamondville',Year==2016)
MIGRATION_ARIMA <- readRDS("Data/Intermediate_Inputs/Migration_ARIMA_Models/Kemmerer_Diamondville_Net_Migration_ARIMA_2016.Rds")
MIGRATION_ODDS <- readRDS("Data/Intermediate_Inputs/Migration_Trends/Migration_Age_Probability_Zero_to_85.Rds")
MIGRATION_MATRIX <- simulate(nsim=NUM_SIMULATIONS,MIGRATION_ARIMA,n=YEARS_AHEAD)
MIGRATION_MATRIX <- do.call(cbind, mclapply(1:NUM_SIMULATIONS,function(x)(as.vector(simulate(nsim=YEARS_AHEAD,MIGRATION_ARIMA) )),mc.cores = detectCores()-1))
rownames(MIGRATION_MATRIX) <- ST_YEAR:(ST_YEAR+YEARS_AHEAD-1)
colnames(MIGRATION_MATRIX) <- 1:NUM_SIMULATIONS
##############
#Data for death rate trends
SINGLE_AGE_MODS <- readRDS("Data/Intermediate_Inputs/Mortality_Regression_Data/Single_Sex_Age_Time_Series_Regression_2016.Rds")
BOUNDS <- readRDS("Data/Intermediate_Inputs/Mortality_Regression_Data/Single_Sex_Age_Bounds_for_Predictions.Rds")
@ -52,14 +49,17 @@ colnames(MIGRATION_MATRIX) <- 1:NUM_SIMULATIONS
MOD_LIN_WOMEN <- readRDS("Data/Intermediate_Inputs/Age_Mortality_ARIMA_Models/ARIMA_Lincoln_Women_Mortality_by_Age_2016.Rds")
XREG <- cbind(rep(0.0001,YEARS_AHEAD+1),rep(0.0001,YEARS_AHEAD+1)) #Empty data set to simulate in the future
XREG <- ts(XREG,start=ST_YEAR,frequency=1)
SIMULATED_MORTALITY_DATA_SET <- MAKE_EMPTY(ST_YEAR,ST_YEAR+YEARS_AHEAD,MOD_LIN_MEN,MOD_LIN_WOMEN,MOD_MEN_ALL,MOD_WOMEN_ALL,XREG)
MORTALITY_SIMULATION <- AGE_DIST(SINGLE_AGE_MODS,SIMULATED_MORTALITY_DATA_SET ,MAX_MALE,MAX_FEMALE,MIN_MALE,MIN_FEMALE,MAX_GAP,MIN_GAP,BASELINE_AGE_ADJUST_MEN,BASELINE_AGE_ADJUST_WOMEN)
SIMULATE_MORTALITY_RATE_TRENDS <- function(){
SIMULATED_MORTALITY_DATA_SET <- MAKE_EMPTY(ST_YEAR,ST_YEAR+YEARS_AHEAD,MOD_LIN_MEN,MOD_LIN_WOMEN,MOD_MEN_ALL,MOD_WOMEN_ALL,XREG)
MORTALITY_SIMULATION <- AGE_DIST(SINGLE_AGE_MODS,SIMULATED_MORTALITY_DATA_SET ,MAX_MALE,MAX_FEMALE,MIN_MALE,MIN_FEMALE,MAX_GAP,MIN_GAP,BASELINE_AGE_ADJUST_MEN,BASELINE_AGE_ADJUST_WOMEN)
return(MORTALITY_SIMULATION )
}
#####################START YEAR BY SIMULATIONS
CURRENT_YEARS_AHEAD <- 1
CURRENT_SIM_NUM <- 58
#CURRENT_YEARS_AHEAD=1;CURRENT_SIM_NUM <- 1;MORTALITY_SIMULATION <- SIMULATE_MORTALITY_RATE_TRENDS()
SINGLE_YEAR_SIM <- function(DEMO,BIRTH_DATA,CURRENT_YEARS_AHEAD,MORTALITY_SIMULATION,NET_MIGRATION){
ORIG_DEMO <- DEMO
DEMO <- DEMOGRAPHICS_AFTER_MIGRATION(DEMO, MIGRATION_MATRIX[CURRENT_YEARS_AHEAD ,CURRENT_SIM_NUM],MIGRATION_ODDS )
DEMO <- DEMOGRAPHICS_AFTER_MIGRATION(DEMO, NET_MIGRATION,MIGRATION_ODDS )
TOTAL_MIGRATION <- sum(DEMO-ORIG_DEMO)
BIRTH_DATA$Year <- BIRTH_DATA$Year+1
BIRTH_DATA$Lag_Two_Births <- BIRTH_DATA$Lag_Births
@ -69,86 +69,61 @@ BIRTH_DATA$Births <- NA
BIRTH_DATA$Min_Birth_Group <- min(sum(DEMO[18:30,1]),sum(DEMO[18:28,2]))
NEW_BORNS <- BIRTH_SIM(BIRTH_MOD,BIRTH_DATA)
TOTAL_BIRTHS <- sum(NEW_BORNS)
BIRTH_DATA[,"Births"] <-TOTAL_BIRTHS
BIRTH_DATA[,"Births"] <- TOTAL_BIRTHS
DEMO <- INCREMENT_AGES(DEMO,NEW_BORNS)
MORTALITY_SIMULATION
MALE_DEATHS <- sapply(1:86,function(x){rbinom(1,DEMO[x,1],MORTALITY_SIMULATION[[1]][x,CURRENT_YEARS_AHEAD])})
FEMALE_DEATHS <- sapply(1:86,function(x){rbinom(1,DEMO[x,2],MORTALITY_SIMULATION[[2]][x,CURRENT_YEARS_AHEAD])})
MALE_DEATHS <- ifelse(MALE_DEATHS>=DEMO[,1],DEMO[,1],MALE_DEATHS)
FEMALE_DEATHS <- ifelse(FEMALE_DEATHS>=DEMO[,1],DEMO[,1],FEMALE_DEATHS)
TOTAL_DEATHS <- sum(MALE_DEATHS+FEMALE_DEATHS)
DEMO[,"Num_Male"] <- DEMO[,"Num_Male"] -MALE_DEATHS
DEMO[,"Num_Female"] <- DEMO[,"Num_Female"] -MALE_DEATHS
DEMO[,"Num_Female"] <- DEMO[,"Num_Female"] -FEMALE_DEATHS
#List of values needed for the next run or for reporting a result
list(DEMO,BIRTH_DATA,c(TOTAL_BIRTHS,TOTAL_DEATHS,TOTAL_MIGRATION))
#####User Configuration Values
KEMMER_SIM <- TRUE #Wether the simulation should predict Kemmerer (and Diamondville) or Lincoln County as a whole. TRUE, is Kemmerer False is Lincoln
START_SIM_YEAR <- 2025 #The first year to simulate
NUM_SIMULATIONS <- 10^5 #Number of Monte Carlo Simulations to run
RERUN_MORTALITY_SIMULATION <- TRUE #Rerun the Monte Carlo simulation of future mortality rates (not actual deaths) even if a Rds file of a mortality rates exists. This can be used to speed up runs when FALSE
RERUN_MIGRATION_SIMULATION <- TRUE #Rerun the ARIMA simulations that predict total migration in any year even if a Rds file of a mortality rates exists. This can be used to speed up runs when FALSE
NUM_YEARS_PROJECTED <- 50 #How many years into the future should each Monte Carlo run project to. For example 25 years if starting from 2025 and ending in 2050.
BIRTH_RATE_REG_RESULTS <- "Data/Regression_Results/Birth_Rate_Model.Rds" #Location of the regression used to model variance in birth rates in each Monte Carlo simulation.
START_DEMOGRAPHIC_DATA <- "Data/Cleaned_Data/Start_Year_Demographic_Data_With_Fertility_Groups.Rds" #Location of the data for the first year needing a forecasted birth rate, which aggregates the yearly splits of populations, into a single, year-county data set with variables for key birth prediction (total number of men and women in ages with high fertility rates), and then combines with the data set including births, deaths, migration and population.
AGE_OF_MIGRANT_PROBABILITY <- "Data/Other_Intermediate_Outputs/Migreation_Age_Probablity_One_to_Ninety.csv" #Location of the data which is the result of regression analysis of the age of migrants. That is to say 18 year olds may migrate more than 70 year olds, and this is the distribution by age. Sex was not found to be a major factor
####Run any scripts required before main Monte Carlo
source("Survival_Simulation.r") #Populate a table with a simulation of future mortality rates, for quick recall during the simulation.
#A script contains the code needed to create a feols (fixest) regression of the birth rate given age distribution. Load this saved result or else create it to use in each simulation for gathering variance of births in any given age distribution path of the Monte Carlo.
if(file.exists(BIRTH_RATE_REG_RESULTS)){MOD_BIRTHS <- readRDS(BIRTH_RATE_REG_RESULTS);FIRST_PREDICT_YEAR_POPULATION_DATA <- readRDS(START_DEMOGRAPHIC_DATA)} else{source("Birth_Rate_Regression.r")}
if(file.exists(AGE_OF_MIGRANT_PROBABILITY)){MIG_AGE_DIST <- read.csv(AGE_OF_MIGRANT_PROBABILITY)} else{source("Migration_Regression.r")}
#Rerun the migration simulation if requested
if(RERUN_MIGRATION_SIMULATION ){source("Migration_Regression.r")}
#######################################################Main Monte Carlo
START_DEM_DATA <- readRDS("Data/Cleaned_Data/Lincoln_Demographic_Data.Rds") %>% group_by(County) %>% filter(Year==2023) %>% ungroup %>% select(-County)
MORTALITY_SIMULATION <- readRDS("./Data/Simulated_Data_Sets/MORTALITY_MONTE_CARLO.Rds") #Load the Mortality simulation to speed up simulation
MIGRATION_ARIMA_SIMULATION <- readRDS("./Data/Simulated_Data_Sets/Migration_ARIMA.Rds") #Load the Migration simulation to speed up simulation
#####################!!!!!!!!!!!!!!!!!!!Working on pulling in data from the Data/Cleaned_Data/Intiate_Simulation/ directory which stores a starting point for all groups. Make data much more clean
if(KEMMER_SIM){
LN_POP_ST <- FIRST_PREDICT_YEAR_POPULATION_DATA$Population #Population of Lincoln County
START_DEM_DATA <- readRDS("Data/Cleaned_Data/Kemmerer_Demographic_Data.Rds") %>% select(-County) %>% mutate(County='Lincoln')
FIRST_PREDICT_YEAR_POPULATION_DATA <- readRDS("Data/Cleaned_Data/Kemmerer_Summary_Start_Data.Rds")
KEM_POP_ST <- FIRST_PREDICT_YEAR_POPULATION_DATA$Population
POP_ST_RATIO <- LN_POP_ST/KEM_POP_ST
MIGRATION_ARIMA_SIMS <- round(MIGRATION_ARIMA_SIMS*POP_ST_RATIO) #Downscale County migreation to the city level based on average popualtion
TOTAL_POP <- sum(DEMO)
return(list(DEMO,BIRTH_DATA,c(TOTAL_POP,TOTAL_BIRTHS,TOTAL_DEATHS,TOTAL_MIGRATION)))
}
#Second run, work on making into loop and saving the output to file (check if that will slow the results). Maybe use a predefined matrix, so that the results can be stored quickly
MIGRATION_ARIMA_MODEL <- MIGRATION_ARIMA
SINGLE_SIM <- function(DEMO,BIRTH_DATA,ST_YEAR,YEARS_AHEAD,MIGRATION_ARIMA_MODEL){
MIGRATION_SIM_VALUES <- round(as.vector(simulate(nsim=YEARS_AHEAD,MIGRATION_ARIMA_MODEL) ))
SINGLE_PATH_SIM <- function(j){
C_RES <- RUN_SINGLE_SIM(MOD_BIRTHS,FIRST_PREDICT_YEAR_POPULATION_DATA,START_DEM_DATA,MORTALITY_SIMULATION,SIM_NUMBER=j,START_OF_SIM=START_SIM_YEAR,MIGRATION_ARIMA_SIMULATION,MIG_AGE_DIST)
RES <- C_RES[[1]]
for(i in 1:NUM_YEARS_PROJECTED){
C_RES <- RUN_SINGLE_SIM(MOD_BIRTHS,C_RES[[3]],C_RES[[2]],MORTALITY_SIMULATION,SIM_NUMBER=j,START_OF_SIM=START_SIM_YEAR,MIGRATION_ARIMA_SIMULATION,MIG_AGE_DIST)
RES <- rbind(RES,C_RES[[1]])
}
return(RES)
}
#Run the full simulation across all simulations simulating changes in demographic, and mortality data.
#Setup save results
RES_DIR <- "./Results"
RAW_SIM_FILE <- paste0(RES_DIR,"/Raw_Simulations.csv")
PERCENTILE_DATA <- paste0(RES_DIR,"/Percentile_Clean_Results.csv")
#Loop all results saving in batches
dir.create(RES_DIR,showWarnings=FALSE)
BATCH_SIZE <- 1000
NUM_RUNS <- ceiling(NUM_SIMULATIONS/BATCH_SIZE)
#Run the loop
for(x in 1:NUM_RUNS) {
BATCH_GUID <- UUIDgenerate()
try(FULL_RESULTS <- mclapply(1:BATCH_SIZE,function(x){try(SINGLE_PATH_SIM(x))},mc.cores = detectCores()-1))
if(exists("FULL_RESULTS")){
FULL_RESULTS <- do.call(rbind,lapply(1:BATCH_SIZE,function(x){FULL_RESULTS[[x]] %>% mutate(SIM_ID=UUIDgenerate())}))
FULL_RESULTS$BATCH_ID <- BATCH_GUID
FULL_RESULTS <- FULL_RESULTS%>% select(BATCH_ID,SIM_ID,everything())
if(x==1){write_csv(FULL_RESULTS,RAW_SIM_FILE)}else {write_csv(FULL_RESULTS,RAW_SIM_FILE,append=TRUE)}
rm(FULL_RESULTS)
gc()
}
FINAL_REPORT_VALUES <- matrix(NA,ncol=6,nrow=YEARS_AHEAD)
colnames(FINAL_REPORT_VALUES ) <- c("Sim_UUID","Year","Population","Births","Deaths","Net_Migration")
FINAL_REPORT_VALUES[,1] <- UUIDgenerate()
for(i in 1:YEARS_AHEAD){
C_YEAR <- ST_YEAR+i-1
C_RES <-SINGLE_YEAR_SIM(DEMO,BIRTH_DATA,i,SIMULATE_MORTALITY_RATE_TRENDS(),MIGRATION_SIM_VALUES[i])
DEMO <- C_RES[[1]]
BIRTH_DATA <- C_RES[[2]]
FINAL_REPORT_VALUES[i,-1] <- c(C_YEAR,C_RES[[3]])
}
return(FINAL_REPORT_VALUES)
}
if(!exists("RES_DIR")){RES_DIR<- "./Results/"}
if(!exists("RES_SIM_DIR")){RES_SIM_DIR <- paste0(RES_DIR,"Simulations/")}
dir.create(RES_SIM_DIR, recursive = TRUE, showWarnings = FALSE)
NCORES <- detectCores()-1
BATCH_SIZE <- NCORES*10
TOTAL_SIMULATIONS <- 10^5
N_RUNS <-ceiling(TOTAL_SIMULATIONS/BATCH_SIZE )
SIM_RES_FILE <- paste0(RES_SIM_DIR,"Kemmerer_2016_Simulation.csv")
NEW_RES_FILE <- !file.exists(SIM_RES_FILE)
for(i in 1:N_RUNS){
# MIGRATION_MATRIX <- simulate(nsim=BATCH_SIZE,MIGRATION_ARIMA,n=YEARS_AHEAD)
MIGRATION_MATRIX <- do.call(cbind, mclapply(1:BATCH_SIZE,function(x)(as.vector(simulate(nsim=YEARS_AHEAD,MIGRATION_ARIMA) )),mc.cores = detectCores()-1))
# rownames(MIGRATION_MATRIX) <- ST_YEAR:(ST_YEAR+YEARS_AHEAD-1)
# colnames(MIGRATION_MATRIX) <- 1:BATCH_SIZE
try(RES <- do.call(rbind,mclapply(1:BATCH_SIZE,function(x){SINGLE_SIM(DEMO,BIRTH_DATA,ST_YEAR,YEARS_AHEAD,MIGRATION_ARIMA)},mc.cores=NCORES)))
if(exists("RES")){
RES <- as.data.frame(RES)
RES[,-1] <- as.numeric(as.matrix(RES[,-1]))
if(NEW_RES_FILE){write_csv(RES,SIM_RES_FILE)}else {write_csv(RES,SIM_RES_FILE,col_names=FALSE,append=TRUE)}
rm(RES)
}
}

View File

@ -1,29 +1,36 @@
library(tidyverse)
NUM_YEARS_PROJECTED <- 50 #How many years into the future should each Monte Carlo run project to. For example 25 years if starting from 2025 and ending in 2050.
YEARS <- 2023:(2023+NUM_YEARS_PROJECTED)
#Setup save results
RES_DIR <- "./Results"
RAW_SIM_FILE <- paste0(RES_DIR,"/Raw_Simulations.csv")
PERCENTILE_DATA <- paste0(RES_DIR,"/Percentile_Clean_Results.csv")
###Process the simulations and save the main percentile results by year
RES <- read_csv(RAW_SIM_FILE)
GRAPH_DATA <- do.call(rbind,lapply(YEARS,function(x){quantile(RES %>% filter(Year==x) %>% pull(Population),c(0.025,0.05,0.1,0.25,0.4,0.5,0.6,0.75,0.9,0.95,0.975))})) %>% as_tibble
YEARS <- 2023:(2023+NUM_YEARS_PROJECTED)
GRAPH_DATA$Year <- YEARS
RES <- read_csv("Results/Simulations/Kemmerer_2016_Simulation.csv")
YEARS <- min(RES$Year):max(RES$Year)
######Population
GRAPH_DATA <- do.call(rbind,lapply(YEARS,function(x){quantile(RES %>% filter(Year==x) %>% pull(Population),c(0.025,0.05,0.1,0.25,0.4,0.5,0.6,0.75,0.9,0.95,0.975))})) %>% as_tibble %>% mutate(Year=YEARS)
FAN_DATA <- GRAPH_DATA
GRAPH_DATA <- GRAPH_DATA %>% pivot_longer(cols=!Year,names_to=c("Percentile"),values_to="Population")
write_csv(GRAPH_DATA,PERCENTILE_DATA)
GRAPH_DATA$Percentile <- factor(GRAPH_DATA$Percentile,levels=rev(c('2.5%','5%','10%','25%','40%','60%','75%','90%','95%','97.5%')))
START_POP <- HIST %>% filter(Year==2016) %>% pull(Population)
GRAPH_DATA <- rbind(GRAPH_DATA,GRAPH_DATA %>% filter(Year==2017) %>% mutate(Population=START_POP,Year=2016))
MEDIAN_PRED <- GRAPH_DATA %>% filter(Percentile=='50%')
######Migration
GRAPH_DATA_MIGRATION <- do.call(rbind,lapply(YEARS,function(x){quantile(RES %>% filter(Year==x) %>% pull(Net_Migration),c(0.025,0.05,0.1,0.25,0.4,0.5,0.6,0.75,0.9,0.95,0.975))})) %>% as_tibble %>% mutate(Year=YEARS)
FAN_DATA_MIGRATION <- GRAPH_DATA_MIGRATION
GRAPH_DATA_MIGRATION <- GRAPH_DATA_MIGRATION %>% pivot_longer(cols=!Year,names_to=c("Percentile"),values_to="Migration")
GRAPH_DATA_MIGRATION$Percentile <- factor(GRAPH_DATA_MIGRATION$Percentile,levels=rev(c('2.5%','5%','10%','25%','40%','60%','75%','90%','95%','97.5%')))
MEDIAN_PRED_MIGRATION <- GRAPH_DATA_MIGRATION %>% filter(Percentile=='50%')
#write_csv(GRAPH_DATA,PERCENTILE_DATA)
#Add historic
MEDIAN_PRED <- GRAPH_DATA %>% filter(Percentile=='50%')
GRAPH_DATA <- GRAPH_DATA %>% filter(Percentile!='50%')
HIST <- readRDS("Data/Cleaned_Data/Population_Data/RDS/Kemmerer_Diamondville_Population_Data.Rds") %>% filter(County=='Lincoln') %>% mutate(Percentile="Actual Population") %>% filter(Year>=1940)
HIST <- readRDS("Data/Cleaned_Data/Wyoming_County_Population.Rds") %>% filter(County=='Lincoln') %>% mutate(Percentile="Actual Population") %>% filter(Year>1930)
ALPHA=0.2
COLOR <- 'black'
GRAPH_DATA$Percentile <- factor(GRAPH_DATA$Percentile,levels=rev(c('2.5%','5%','10%','25%','40%','60%','75%','90%','95%','97.5%')))
GRAPH <- ggplot(data=GRAPH_DATA)+geom_ribbon(data=FAN_DATA,aes(x=Year,ymin=`2.5%`,ymax=`97.5%`),alpha=ALPHA,fill=COLOR)+geom_ribbon(data=FAN_DATA,aes(x=Year,ymin=`5%`,ymax=`95%`),alpha=ALPHA,fill=COLOR)+geom_ribbon(data=FAN_DATA,aes(x=Year,ymin=`10%`,ymax=`90%`),alpha=ALPHA,fill=COLOR)+geom_ribbon(data=FAN_DATA,aes(x=Year,ymin=`25%`,ymax=`75%`),alpha=ALPHA,fill=COLOR)+geom_ribbon(data=FAN_DATA,aes(x=Year,ymin=`40%`,ymax=`60%`),alpha=ALPHA,fill=COLOR)+geom_line(aes(x=Year,y=Population,group=Percentile,color=Percentile))+geom_line(data=HIST,aes(x=Year,y=Population),color='black',linewidth=0.75)+geom_line(data=MEDIAN_PRED,aes(x=Year,y=Population),color='black',linetype=4,linewidth=0.75)+ scale_x_continuous(breaks = c(seq(1940, 2070, by = 10)))+ scale_y_continuous(breaks = seq(0, 35000, by = 5000))+theme_bw()+ggtitle("Lincoln County, Wyoming Population Forecast")
GRAPH
length(RES$SIM_ID %>% unique)
ggsave("Lincoln_Forecast.png",GRAPH)
#GRAPH <-
nrow(RES)
ggplot(data=GRAPH_DATA)+geom_ribbon(data=FAN_DATA,aes(x=Year,ymin=`2.5%`,ymax=`97.5%`),alpha=ALPHA,fill=COLOR)+geom_ribbon(data=FAN_DATA,aes(x=Year,ymin=`5%`,ymax=`95%`),alpha=ALPHA,fill=COLOR)+geom_ribbon(data=FAN_DATA,aes(x=Year,ymin=`10%`,ymax=`90%`),alpha=ALPHA,fill=COLOR)+geom_ribbon(data=FAN_DATA,aes(x=Year,ymin=`25%`,ymax=`75%`),alpha=ALPHA,fill=COLOR)+geom_ribbon(data=FAN_DATA,aes(x=Year,ymin=`40%`,ymax=`60%`),alpha=ALPHA,fill=COLOR)+geom_line(aes(x=Year,y=Population,group=Percentile,color=Percentile))+geom_line(data=HIST,aes(x=Year,y=Population),color='black',linewidth=0.75)+geom_line(data=MEDIAN_PRED,aes(x=Year,y=Population),color='black',linetype=4,linewidth=0.75)+ scale_x_continuous(breaks = c(seq(1940, 2070, by = 10)))+ scale_y_continuous(breaks = seq(0, 35000, by = 250))+theme_bw()+ggtitle("Kemmerer & Diamondville, Population Forecast")+ expand_limits( y = 0)
HIST %>% filter(!is.na(Migration))
ggplot(data=GRAPH_DATA_MIGRATION)+geom_ribbon(data=FAN_DATA_MIGRATION,aes(x=Year,ymin=`2.5%`,ymax=`97.5%`),alpha=ALPHA,fill=COLOR)+geom_ribbon(data=FAN_DATA_MIGRATION,aes(x=Year,ymin=`5%`,ymax=`95%`),alpha=ALPHA,fill=COLOR)+geom_ribbon(data=FAN_DATA_MIGRATION,aes(x=Year,ymin=`10%`,ymax=`90%`),alpha=ALPHA,fill=COLOR)+geom_ribbon(data=FAN_DATA_MIGRATION,aes(x=Year,ymin=`25%`,ymax=`75%`),alpha=ALPHA,fill=COLOR)+geom_ribbon(data=FAN_DATA_MIGRATION,aes(x=Year,ymin=`40%`,ymax=`60%`),alpha=ALPHA,fill=COLOR)+geom_line(aes(x=Year,y=Migration,group=Percentile,color=Percentile))+geom_line(data=HIST %>% filter(Year>=2008),aes(x=Year,y=Migration),color='black',linewidth=0.75)+geom_line(data=MEDIAN_PRED_MIGRATION,aes(x=Year,y=Migration),color='black',linetype=4,linewidth=0.75)+ scale_x_continuous(breaks = c(seq(2010, 2070, by = 10)))+ scale_y_continuous(breaks = seq(-500, 100, by = 100))+theme_bw()+ggtitle("Kemmerer, Wyoming Migration Forecast")

View File

@ -34,6 +34,8 @@ LN_2016 <- TS_DATA %>% dplyr::select(Year,County,Migration) %>% pivot_wider(val
LN_1985 <- TS_DATA %>% dplyr::select(Year,County,Migration) %>% pivot_wider(values_from=Migration,names_from=County) %>% arrange(Year) %>% dplyr::select(Lincoln,Year) %>% filter(Year>=ST_YEAR,Year<=1985) %>% dplyr::select(-Year) %>%ts(start=c(ST_YEAR),frequency=1)
KEM <- TS_KEM_DATA %>% dplyr::select(Year,Region,Migration) %>% pivot_wider(values_from=Migration,names_from=Region) %>% arrange(Year) %>% dplyr::select('Kemmerer & Diamondville',Year) %>% filter(Year>=ST_YEAR_KEM,Year<=END_YEAR_KEM) %>% dplyr::select(-Year) %>%ts(start=c(ST_YEAR_KEM),frequency=1)
KEM_2016 <- TS_KEM_DATA %>% dplyr::select(Year,Region,Migration) %>% filter(Year<=2016) %>% pivot_wider(values_from=Migration,names_from=Region) %>% arrange(Year) %>% dplyr::select('Kemmerer & Diamondville',Year) %>% filter(Year>=ST_YEAR_KEM,Year<=2016) %>% dplyr::select(-Year) %>%ts(start=c(ST_YEAR_KEM),frequency=1)
OTHER <- TS_OTHER_DATA %>% dplyr::select(Year,Region,Migration) %>% pivot_wider(values_from=Migration,names_from=Region) %>% arrange(Year) %>% dplyr::select('Lincoln Other'=Lincoln_Other,Year) %>% filter(Year>=ST_YEAR_OTHER,Year<=END_YEAR_OTHER) %>% dplyr::select(-Year) %>%ts(start=c(ST_YEAR_OTHER),frequency=1)
#Create an ARIMA of Migration so the number of people migrating can be simulated
@ -45,6 +47,7 @@ MOD <- auto.arima(LN)
MOD_2016 <- auto.arima(LN_2016)
MOD_1985 <- auto.arima(LN_1985)
MOD_KEM <- auto.arima(KEM)
MOD_KEM_2016 <- auto.arima(KEM_2016)
MOD_OTHER <- auto.arima(OTHER)
##Because the Lincoln county simulation has more data, it will show trends more easily. As a proxy for the subregions adjust the Kemmerer and Diamondville data such that the magnitude of the mean migration is the same portion of the magnitude of the Lincoln County data. Note that the ARIMA for Kemmerer ONLY includes a mean value so this is a reasonable way to model overall migration. In a similar way asses all non Kemmerer net migration to the other regions. This does understate migration in years where the sub-regions have opposite direction of net migrations, but works well when assuming the two regions share a portion of total county migration
@ -60,7 +63,9 @@ OTHER_2016_NEW <- LN_2016/LN_ADJ_OTHER
OTHER_1985_NEW <- LN_1985/LN_ADJ_OTHER
#Create new models for migration forecasts
MOD_KEM_ADJ <- auto.arima(KEM_NEW ,stationary=TRUE)
median(simulate(MOD_KEM_ADJ,100000 ))
MOD_KEM_ADJ_2016 <- auto.arima(KEM_2016_NEW ,stationary=TRUE)
MOD_KEM_ADJ_2016 <- auto.arima(KEM_2016_NEW+as.numeric(coef(MOD_KEM_2016)["intercept"]))
MOD_KEM_ADJ_1985 <- auto.arima(KEM_1985_NEW ,stationary=TRUE)
MOD_OTHER_ADJ <- auto.arima(OTHER_NEW,stationary=TRUE)
MOD_OTHER_ADJ_2016 <- auto.arima(OTHER_2016_NEW,stationary=TRUE)
@ -73,7 +78,8 @@ saveRDS(MOD_KEM_ADJ,paste0(SAVE_LOC_ARIMA_MODELS,"Kemmerer_Diamondville_Net_Migr
saveRDS(MOD_OTHER_ADJ,paste0(SAVE_LOC_ARIMA_MODELS,"Other_Lincoln_Net_Migration_ARIMA.Rds"))
saveRDS(MOD_2016,paste0(SAVE_LOC_ARIMA_MODELS,"Full_Lincoln_County_Net_Migration_ARIMA_2016.Rds"))
saveRDS(MOD_KEM_ADJ_2016,paste0(SAVE_LOC_ARIMA_MODELS,"Kemmerer_Diamondville_Net_Migration_ARIMA_2016.Rds"))
saveRDS(MOD_KEM_2016,paste0(SAVE_LOC_ARIMA_MODELS,"Kemmerer_Diamondville_Net_Migration_ARIMA_2016.Rds"))
saveRDS(MOD_KEM_ADJ_2016,paste0(SAVE_LOC_ARIMA_MODELS,"Kemmerer_Diamondville_Adjusted_to_Lincoln_Model_Net_Migration_ARIMA_2016.Rds"))
saveRDS(MOD_OTHER_ADJ_2016,paste0(SAVE_LOC_ARIMA_MODELS,"Other_Lincoln_Net_Migration_ARIMA_2016.Rds"))
saveRDS(MOD_1985,paste0(SAVE_LOC_ARIMA_MODELS,"Full_Lincoln_County_Net_Migration_ARIMA_1985.Rds"))

View File

@ -87,6 +87,26 @@ OUT <- table(sample(0:85,NUM_MIGRATED_IN,prob=ODDS_MIGRATED,replace=TRUE),sample
}
#Pull the correct rows of the demographics table using the row names. The names are a character set going from 0-85 ages, while the index is 1:86, so make sure to use the charter names. Add these new immigrants to the existing demographics of age-sex combinations.
DEMOGRAPHIC_DATASET[as.character(rownames(OUT)),] <- DEMOGRAPHIC_DATASET[as.character(rownames(OUT)),]+OUT
#tryCatch(
# expr = {
# DEMOGRAPHIC_DATASET[as.character(rownames(OUT)),] <- DEMOGRAPHIC_DATASET[as.character(rownames(OUT)),]+OUT
# Code to be evaluated
# },
# error = function(e) {
# Code to execute if an error occurs
# 'e' contains the error object
# sink("~/Gitea/Work/Population_Study/ERROR.txt")
# print(DEMOGRAPHIC_DATASET)
# saveRDS(list(DEMOGRAPHIC_DATASET,OUT,NUM_MIGRATED_IN),"~/Gitea/Work/Population_Study/ERROR.Rds")
# sink()
# },
# warning = function(w) {
# sink("~/Gitea/Work/Population_Study/WARNING.txt")
# print(DEMOGRAPHIC_DATASET)
# saveRDS(DEMOGRAPHIC_DATASET,"~/Gitea/Work/Population_Study/WARNING.Rds")
# sink()
# })
return(DEMOGRAPHIC_DATASET)
}
#Combine both functions for easier coding later on, allowing one function to be called in all scenarios