Demographic split Kem/Lin and start sim files made

This commit is contained in:
Alex Gebben Work 2025-11-04 17:07:59 -07:00
parent 7e43123840
commit 9b28cf518f
5 changed files with 141 additions and 92 deletions

2
.gitignore vendored
View File

@ -1,6 +1,8 @@
# ---> R
#
*.png
*.csv
Results/
#Don't save any major data files on the server, can be regenerated after pulling
*.Rds

View File

@ -31,6 +31,8 @@ if(RERUN_MIGRATION_SIMULATION ){source("Migration_Regression.r")}
START_DEM_DATA <- readRDS("Data/Cleaned_Data/Lincoln_Demographic_Data.Rds") %>% group_by(County) %>% filter(Year==2023) %>% ungroup %>% select(-County)
MORTALITY_SIMULATION <- readRDS("./Data/Simulated_Data_Sets/MORTALITY_MONTE_CARLO.Rds") #Load the Mortality simulation to speed up simulation
MIGRATION_ARIMA_SIMULATION <- readRDS("./Data/Simulated_Data_Sets/Migration_ARIMA.Rds") #Load the Migration simulation to speed up simulation
#####################!!!!!!!!!!!!!!!!!!!Working on pulling in data from the Data/Cleaned_Data/Intiate_Simulation/ directory which stores a starting point for all groups. Make data much more clean
if(KEMMER_SIM){
LN_POP_ST <- FIRST_PREDICT_YEAR_POPULATION_DATA$Population #Population of Lincoln County
START_DEM_DATA <- readRDS("Data/Cleaned_Data/Kemmerer_Demographic_Data.Rds") %>% select(-County) %>% mutate(County='Lincoln')

View File

@ -1,87 +1,87 @@
County,Year,Age,Num_Male,Num_Female
Kemmerer,2024,0,10.464965521092157,18.53827755476956
Kemmerer,2024,1,10.73329797035093,26.12211837262983
Kemmerer,2024,2,9.838856472821687,22.330197963699696
Kemmerer,2024,3,11.717183617633099,26.3327806175704
Kemmerer,2024,4,10.464965521092157,24.015495923224204
Kemmerer,2024,5,15.460982984335295,16.925040008171884
Kemmerer,2024,6,19.09886133359066,18.773993958644443
Kemmerer,2024,7,20.78787628145922,22.045220178711276
Kemmerer,2024,8,17.409846385722098,19.34290286648215
Kemmerer,2024,9,21.17764896173658,20.05403900127929
Kemmerer,2024,10,23.313248886019743,19.837665883519023
Kemmerer,2024,11,24.63286674749256,19.692865402617425
Kemmerer,2024,12,25.0727393679835,18.534461555404636
Kemmerer,2024,13,24.19299412700162,23.023276463354193
Kemmerer,2024,14,26.53898143628663,23.74727886786219
Kemmerer,2024,15,13.763908906585888,13.325834953286826
Kemmerer,2024,16,14.400390243306624,12.585510789215336
Kemmerer,2024,17,15.116431747117451,11.919219041550994
Kemmerer,2024,18,8.11409091515564,8.11283185840708
Kemmerer,2024,19,6.633417390492201,5.672882427307205
Kemmerer,2024,20,8.976744186046512,27.571428571428573
Kemmerer,2024,21,0,6.411960132890365
Kemmerer,2024,22,10.007317017094115,16.00986295681063
Kemmerer,2024,23,9.285139500396603,13.795732973421927
Kemmerer,2024,24,10.523158100449484,13.795732973421927
Kemmerer,2024,25,14.229527197897555,14.473076411960134
Kemmerer,2024,26,12.94653704071007,15.057847176079733
Kemmerer,2024,27,13.179807978380522,13.888305647840532
Kemmerer,2024,28,9.214202037982844,13.74211295681063
Kemmerer,2024,29,12.94653704071007,15.935003322259135
Kemmerer,2024,30,9.841972541328104,16.16915622314293
Kemmerer,2024,31,10.64539887123244,16.16915622314293
Kemmerer,2024,32,9.339831085137893,17.360567734321886
Kemmerer,2024,33,10.24368570628027,17.360567734321886
Kemmerer,2024,34,9.942400832566145,21.10500391231288
Kemmerer,2024,35,23.090047712195066,13.797127159737228
Kemmerer,2024,36,24.414886515353803,15.316076938790872
Kemmerer,2024,37,21.386683536705274,16.20213097657216
Kemmerer,2024,38,23.2793103983606,16.835026717844507
Kemmerer,2024,39,29.33571635565767,16.07555182831769
Kemmerer,2024,40,17.783950233132593,12.477327826165036
Kemmerer,2024,41,17.654140377416297,12.581305558049745
Kemmerer,2024,42,16.615661531685927,13.413127413127413
Kemmerer,2024,43,18.30318965599778,15.388704318936878
Kemmerer,2024,44,19.73109806887704,15.388704318936878
Kemmerer,2024,45,9.96622215641455,21.42182039512059
Kemmerer,2024,46,10.86595054553531,17.354386142882504
Kemmerer,2024,47,10.796740669449097,16.812061575917422
Kemmerer,2024,48,9.96622215641455,16.405318150693617
Kemmerer,2024,49,8.097555502086824,16.812061575917422
Kemmerer,2024,50,11.910119959416715,17.094436330798903
Kemmerer,2024,51,12.541717229991843,18.692047202836182
Kemmerer,2024,52,13.443999045099172,20.928702423688375
Kemmerer,2024,53,12.000348140927445,20.928702423688375
Kemmerer,2024,54,10.37624087373426,17.57371959241009
Kemmerer,2024,55,27.330581312705572,17.79318936877076
Kemmerer,2024,56,28.04355299912398,19.075581395348838
Kemmerer,2024,57,24.71635179583808,19.716777408637874
Kemmerer,2024,58,30.1824680583792,21.640365448504983
Kemmerer,2024,59,33.034354804052825,21.80066445182724
Kemmerer,2024,60,24.58166576527853,13.547851248526417
Kemmerer,2024,61,25.752221277910838,15.305969349480229
Kemmerer,2024,62,23.212805992871722,17.31788012362568
Kemmerer,2024,63,23.212805992871722,16.868065055479555
Kemmerer,2024,64,24.42654748269508,17.430333890662205
Kemmerer,2024,65,17.826584994462902,31.169037340601193
Kemmerer,2024,66,20.324577796234774,32.30936797501343
Kemmerer,2024,67,31.745589072282296,31.707002858013322
Kemmerer,2024,68,31.745589072282296,32.5413976700663
Kemmerer,2024,69,29.161645775701185,31.289805451986826
Kemmerer,2024,70,27.118003770017854,15.476896504155697
Kemmerer,2024,71,25.59022890973516,15.122463759785719
Kemmerer,2024,72,21.579819901493085,13.114011541689177
Kemmerer,2024,73,20.43398875628106,12.405146052949224
Kemmerer,2024,74,20.052045041210388,12.168857556702571
Kemmerer,2024,75,27.418452872826624,9.03148043108338
Kemmerer,2024,76,32.273803902389666,9.305161656267725
Kemmerer,2024,77,19.421404118252187,5.199943278502552
Kemmerer,2024,78,17.422141929608582,5.0174891283796565
Kemmerer,2024,79,15.994097509148864,5.108716203441104
Kemmerer,2024,80,7.746694691165502,5.8689063665333245
Kemmerer,2024,81,5.325852600176282,5.103396840463761
Kemmerer,2024,82,3.7523052410332904,5.358566682486948
Kemmerer,2024,83,3.510221031934368,4.465472235405791
Kemmerer,2024,84,3.389178927384908,4.2103023933826025
Kemmerer,2024,85,20.83887043189369,18.274086378737543
Kemmerer,2024,0,10,19
Kemmerer,2024,1,11,26
Kemmerer,2024,2,10,22
Kemmerer,2024,3,12,26
Kemmerer,2024,4,10,24
Kemmerer,2024,5,15,17
Kemmerer,2024,6,19,19
Kemmerer,2024,7,21,22
Kemmerer,2024,8,17,19
Kemmerer,2024,9,21,20
Kemmerer,2024,10,23,20
Kemmerer,2024,11,25,20
Kemmerer,2024,12,25,19
Kemmerer,2024,13,24,23
Kemmerer,2024,14,27,24
Kemmerer,2024,15,14,13
Kemmerer,2024,16,14,13
Kemmerer,2024,17,15,12
Kemmerer,2024,18,8,8
Kemmerer,2024,19,7,6
Kemmerer,2024,20,9,28
Kemmerer,2024,21,0,6
Kemmerer,2024,22,10,16
Kemmerer,2024,23,9,14
Kemmerer,2024,24,11,14
Kemmerer,2024,25,14,14
Kemmerer,2024,26,13,15
Kemmerer,2024,27,13,14
Kemmerer,2024,28,9,14
Kemmerer,2024,29,13,16
Kemmerer,2024,30,10,16
Kemmerer,2024,31,11,16
Kemmerer,2024,32,9,17
Kemmerer,2024,33,10,17
Kemmerer,2024,34,10,21
Kemmerer,2024,35,23,14
Kemmerer,2024,36,24,15
Kemmerer,2024,37,21,16
Kemmerer,2024,38,23,17
Kemmerer,2024,39,29,16
Kemmerer,2024,40,18,12
Kemmerer,2024,41,18,13
Kemmerer,2024,42,17,13
Kemmerer,2024,43,18,15
Kemmerer,2024,44,20,15
Kemmerer,2024,45,10,21
Kemmerer,2024,46,11,17
Kemmerer,2024,47,11,17
Kemmerer,2024,48,10,16
Kemmerer,2024,49,8,17
Kemmerer,2024,50,12,17
Kemmerer,2024,51,13,19
Kemmerer,2024,52,13,21
Kemmerer,2024,53,12,21
Kemmerer,2024,54,10,18
Kemmerer,2024,55,27,18
Kemmerer,2024,56,28,19
Kemmerer,2024,57,25,20
Kemmerer,2024,58,30,22
Kemmerer,2024,59,33,22
Kemmerer,2024,60,25,14
Kemmerer,2024,61,26,15
Kemmerer,2024,62,23,17
Kemmerer,2024,63,23,17
Kemmerer,2024,64,24,17
Kemmerer,2024,65,18,31
Kemmerer,2024,66,20,32
Kemmerer,2024,67,32,32
Kemmerer,2024,68,32,33
Kemmerer,2024,69,29,31
Kemmerer,2024,70,27,15
Kemmerer,2024,71,26,15
Kemmerer,2024,72,22,13
Kemmerer,2024,73,20,12
Kemmerer,2024,74,20,12
Kemmerer,2024,75,27,9
Kemmerer,2024,76,32,9
Kemmerer,2024,77,19,5
Kemmerer,2024,78,17,5
Kemmerer,2024,79,16,5
Kemmerer,2024,80,8,6
Kemmerer,2024,81,5,5
Kemmerer,2024,82,4,5
Kemmerer,2024,83,4,4
Kemmerer,2024,84,3,4
Kemmerer,2024,85,21,18

1 County Year Age Num_Male Num_Female
2 Kemmerer 2024 0 10.464965521092157 10 18.53827755476956 19
3 Kemmerer 2024 1 10.73329797035093 11 26.12211837262983 26
4 Kemmerer 2024 2 9.838856472821687 10 22.330197963699696 22
5 Kemmerer 2024 3 11.717183617633099 12 26.3327806175704 26
6 Kemmerer 2024 4 10.464965521092157 10 24.015495923224204 24
7 Kemmerer 2024 5 15.460982984335295 15 16.925040008171884 17
8 Kemmerer 2024 6 19.09886133359066 19 18.773993958644443 19
9 Kemmerer 2024 7 20.78787628145922 21 22.045220178711276 22
10 Kemmerer 2024 8 17.409846385722098 17 19.34290286648215 19
11 Kemmerer 2024 9 21.17764896173658 21 20.05403900127929 20
12 Kemmerer 2024 10 23.313248886019743 23 19.837665883519023 20
13 Kemmerer 2024 11 24.63286674749256 25 19.692865402617425 20
14 Kemmerer 2024 12 25.0727393679835 25 18.534461555404636 19
15 Kemmerer 2024 13 24.19299412700162 24 23.023276463354193 23
16 Kemmerer 2024 14 26.53898143628663 27 23.74727886786219 24
17 Kemmerer 2024 15 13.763908906585888 14 13.325834953286826 13
18 Kemmerer 2024 16 14.400390243306624 14 12.585510789215336 13
19 Kemmerer 2024 17 15.116431747117451 15 11.919219041550994 12
20 Kemmerer 2024 18 8.11409091515564 8 8.11283185840708 8
21 Kemmerer 2024 19 6.633417390492201 7 5.672882427307205 6
22 Kemmerer 2024 20 8.976744186046512 9 27.571428571428573 28
23 Kemmerer 2024 21 0 6.411960132890365 6
24 Kemmerer 2024 22 10.007317017094115 10 16.00986295681063 16
25 Kemmerer 2024 23 9.285139500396603 9 13.795732973421927 14
26 Kemmerer 2024 24 10.523158100449484 11 13.795732973421927 14
27 Kemmerer 2024 25 14.229527197897555 14 14.473076411960134 14
28 Kemmerer 2024 26 12.94653704071007 13 15.057847176079733 15
29 Kemmerer 2024 27 13.179807978380522 13 13.888305647840532 14
30 Kemmerer 2024 28 9.214202037982844 9 13.74211295681063 14
31 Kemmerer 2024 29 12.94653704071007 13 15.935003322259135 16
32 Kemmerer 2024 30 9.841972541328104 10 16.16915622314293 16
33 Kemmerer 2024 31 10.64539887123244 11 16.16915622314293 16
34 Kemmerer 2024 32 9.339831085137893 9 17.360567734321886 17
35 Kemmerer 2024 33 10.24368570628027 10 17.360567734321886 17
36 Kemmerer 2024 34 9.942400832566145 10 21.10500391231288 21
37 Kemmerer 2024 35 23.090047712195066 23 13.797127159737228 14
38 Kemmerer 2024 36 24.414886515353803 24 15.316076938790872 15
39 Kemmerer 2024 37 21.386683536705274 21 16.20213097657216 16
40 Kemmerer 2024 38 23.2793103983606 23 16.835026717844507 17
41 Kemmerer 2024 39 29.33571635565767 29 16.07555182831769 16
42 Kemmerer 2024 40 17.783950233132593 18 12.477327826165036 12
43 Kemmerer 2024 41 17.654140377416297 18 12.581305558049745 13
44 Kemmerer 2024 42 16.615661531685927 17 13.413127413127413 13
45 Kemmerer 2024 43 18.30318965599778 18 15.388704318936878 15
46 Kemmerer 2024 44 19.73109806887704 20 15.388704318936878 15
47 Kemmerer 2024 45 9.96622215641455 10 21.42182039512059 21
48 Kemmerer 2024 46 10.86595054553531 11 17.354386142882504 17
49 Kemmerer 2024 47 10.796740669449097 11 16.812061575917422 17
50 Kemmerer 2024 48 9.96622215641455 10 16.405318150693617 16
51 Kemmerer 2024 49 8.097555502086824 8 16.812061575917422 17
52 Kemmerer 2024 50 11.910119959416715 12 17.094436330798903 17
53 Kemmerer 2024 51 12.541717229991843 13 18.692047202836182 19
54 Kemmerer 2024 52 13.443999045099172 13 20.928702423688375 21
55 Kemmerer 2024 53 12.000348140927445 12 20.928702423688375 21
56 Kemmerer 2024 54 10.37624087373426 10 17.57371959241009 18
57 Kemmerer 2024 55 27.330581312705572 27 17.79318936877076 18
58 Kemmerer 2024 56 28.04355299912398 28 19.075581395348838 19
59 Kemmerer 2024 57 24.71635179583808 25 19.716777408637874 20
60 Kemmerer 2024 58 30.1824680583792 30 21.640365448504983 22
61 Kemmerer 2024 59 33.034354804052825 33 21.80066445182724 22
62 Kemmerer 2024 60 24.58166576527853 25 13.547851248526417 14
63 Kemmerer 2024 61 25.752221277910838 26 15.305969349480229 15
64 Kemmerer 2024 62 23.212805992871722 23 17.31788012362568 17
65 Kemmerer 2024 63 23.212805992871722 23 16.868065055479555 17
66 Kemmerer 2024 64 24.42654748269508 24 17.430333890662205 17
67 Kemmerer 2024 65 17.826584994462902 18 31.169037340601193 31
68 Kemmerer 2024 66 20.324577796234774 20 32.30936797501343 32
69 Kemmerer 2024 67 31.745589072282296 32 31.707002858013322 32
70 Kemmerer 2024 68 31.745589072282296 32 32.5413976700663 33
71 Kemmerer 2024 69 29.161645775701185 29 31.289805451986826 31
72 Kemmerer 2024 70 27.118003770017854 27 15.476896504155697 15
73 Kemmerer 2024 71 25.59022890973516 26 15.122463759785719 15
74 Kemmerer 2024 72 21.579819901493085 22 13.114011541689177 13
75 Kemmerer 2024 73 20.43398875628106 20 12.405146052949224 12
76 Kemmerer 2024 74 20.052045041210388 20 12.168857556702571 12
77 Kemmerer 2024 75 27.418452872826624 27 9.03148043108338 9
78 Kemmerer 2024 76 32.273803902389666 32 9.305161656267725 9
79 Kemmerer 2024 77 19.421404118252187 19 5.199943278502552 5
80 Kemmerer 2024 78 17.422141929608582 17 5.0174891283796565 5
81 Kemmerer 2024 79 15.994097509148864 16 5.108716203441104 5
82 Kemmerer 2024 80 7.746694691165502 8 5.8689063665333245 6
83 Kemmerer 2024 81 5.325852600176282 5 5.103396840463761 5
84 Kemmerer 2024 82 3.7523052410332904 4 5.358566682486948 5
85 Kemmerer 2024 83 3.510221031934368 4 4.465472235405791 4
86 Kemmerer 2024 84 3.389178927384908 3 4.2103023933826025 4
87 Kemmerer 2024 85 20.83887043189369 21 18.274086378737543 18

View File

@ -1,2 +1,2 @@
Year,County,Population,Births,Deaths,Migration,Min_Birth_Group,PREV_BIRTH,PREV_TWO_BIRTH
2024,Kemmerer,2895,NA,NA,NA,125.89845094664372,29,37
2024,Kemmerer,2895,NA,NA,NA,126,29,37

1 Year County Population Births Deaths Migration Min_Birth_Group PREV_BIRTH PREV_TWO_BIRTH
2 2024 Kemmerer 2895 NA NA NA 125.89845094664372 126 29 37

View File

@ -4,6 +4,7 @@ ACS_FILE_LOC <- "Data/Cleaned_Data/ACS_Census_Demographic_Data.Rds"
ACS_YEAR <- 2023 #Year of the ACS data
if(!file.exists(ACS_FILE_LOC)){source("Scripts/Load_ACS_Census_Data.r")}else{AGE_DATA <- readRDS(ACS_FILE_LOC)}
LIN_DEMOGRAPHICS <- readRDS("Data/Cleaned_Data/Lincoln_Demographic_Data.Rds") %>% filter(Year==ACS_YEAR)
for(i in 1:nrow(AGE_DATA)){
if(i==1 & exists("RES")){rm(RES)}
C_DEMO <- AGE_DATA[i,]
@ -20,7 +21,7 @@ for(i in 1:nrow(AGE_DATA)){
}
RES <- RES %>% group_by(IN_KEM) %>% mutate(Per_Pop=Population/sum(Population)) %>% mutate(Region=ifelse(IN_KEM,'Kemmerere & Diamondville','Rest of the County')) %>% select(-Population) %>% ungroup
CURRENT_KEM_POP <- readRDS("Data/Cleaned_Data/Wyoming_City_Population.Rds") %>% filter(City %in% c('Kemmerer','Diamondville'),Year==max(Year)) %>% mutate(Population=as.numeric(Population)) %>% pull(Population) %>% sum()
KEM_DEMOGRAPHICS <- RES %>% filter(IN_KEM==1) %>% select(Age,Sex,Per_Pop) %>% mutate(Year=ACS_YEAR+1,County='Kemmerer',Population=Per_Pop*CURRENT_KEM_POP ) %>% select(-Per_Pop) %>% pivot_wider(values_from=Population,names_from=c(Sex),names_prefix="Num_") %>% select(County,Year,Age,Num_Male,Num_Female)
KEM_DEMOGRAPHICS <- RES %>% filter(IN_KEM==1) %>% select(Age,Sex,Per_Pop) %>% mutate(Year=ACS_YEAR+1,County='Kemmerer',Population=round(Per_Pop*CURRENT_KEM_POP) ) %>% select(-Per_Pop) %>% pivot_wider(values_from=Population,names_from=c(Sex),names_prefix="Num_") %>% select(County,Year,Age,Num_Male,Num_Female)
saveRDS(KEM_DEMOGRAPHICS,"Data/Cleaned_Data/Intiate_Simulation/Kemmerer_Demographic_Data.Rds")
write_csv(KEM_DEMOGRAPHICS,"Data/Cleaned_Data/Intiate_Simulation/Kemmerer_Demographic_Data.csv")
@ -30,6 +31,40 @@ KEM_DEMOGRAPHICS <- RES %>% filter(IN_KEM==1) %>% select(Age,Sex,Per_Pop) %>% mu
INTIATE_KEMMER <- KEM_DEMOGRAPHICS %>% mutate(Male_Window=Age>=18 & Age<=30,Female_Window=Age>=18 & Age<=28) %>% group_by(County,Year) %>% summarize(Female_Birth_Group=sum(Num_Female*Female_Window),Male_Birth_Group=sum(Num_Male*Male_Window),Min_Birth_Group=ifelse(Female_Birth_Group<Male_Birth_Group,Female_Birth_Group,Male_Birth_Group),PREV_BIRTH=ST_BIRTH_KEM,PREV_TWO_BIRTH=ST_BIRTH_TWO_PREV_KEM,Population=CURRENT_KEM_POP) %>% mutate(Births=NA,Deaths=NA,Migration=NA) %>% select(Year,County,Population,Births,Deaths,Migration,Min_Birth_Group,PREV_BIRTH,PREV_TWO_BIRTH) %>% ungroup
saveRDS(INTIATE_KEMMER ,"Data/Cleaned_Data/Intiate_Simulation/Kemmerer_Summary_Start_Data.Rds")
write_csv(INTIATE_KEMMER ,"Data/Cleaned_Data/Intiate_Simulation/Kemmerer_Summary_Start_Data.csv")
###Create data sets that contain all people not in Loncoln but not Kemmerer or Diamondville, for a seperate comparison run
LIN_DEMOGRAPHICS_RECENT <- readRDS("Data/Cleaned_Data/Lincoln_Demographic_Data.Rds") %>% filter(Year==max(Year)) #Grab the most recent year of data for all of the county
LIN_OTHER_DEMOGRAPHICS <- LIN_DEMOGRAPHICS_RECENT %>% left_join(KEM_DEMOGRAPHICS %>% select(-County,ADJ_MALE=Num_Male,ADJ_FEMALE=Num_Female)) %>% mutate(Num_Male=Num_Male-ADJ_MALE,Num_Female=Num_Female-ADJ_FEMALE) %>% select(-ADJ_MALE,-ADJ_FEMALE) %>% ungroup#Deduct the populaiton estimates of Kemmerer to create a "Other Lincoln" data set
#Data sets needed to start a simulation for all but Kemmerer/Diamondville but in the county
ST_BIRTH_OTHER <- round(sum((LIN_OTHER_DEMOGRAPHICS%>% filter(Age==0))[4:5]))
ST_BIRTH_TWO_PREV_OTHER <- round(sum((LIN_OTHER_DEMOGRAPHICS%>% filter(Age==1))[4:5]))
INTIATE_OTHER <- LIN_OTHER_DEMOGRAPHICS %>% mutate(Male_Window=Age>=18 & Age<=30,Female_Window=Age>=18 & Age<=28) %>% group_by(County,Year) %>% summarize(Female_Birth_Group=sum(Num_Female*Female_Window),Male_Birth_Group=sum(Num_Male*Male_Window),Min_Birth_Group=ifelse(Female_Birth_Group<Male_Birth_Group,Female_Birth_Group,Male_Birth_Group),PREV_BIRTH=ST_BIRTH_OTHER,PREV_TWO_BIRTH=ST_BIRTH_TWO_PREV_OTHER,Population=CURRENT_KEM_POP) %>% mutate(Births=NA,Deaths=NA,Migration=NA) %>% select(Year,County,Population,Births,Deaths,Migration,Min_Birth_Group,PREV_BIRTH,PREV_TWO_BIRTH) %>% ungroup
#Save detailed demographics for start of analysis
saveRDS(LIN_OTHER_DEMOGRAPHICS,"Data/Cleaned_Data/Intiate_Simulation/Lincoln_Rest_of_County_Demographic_Data.Rds")
write_csv(LIN_OTHER_DEMOGRAPHICS,"Data/Cleaned_Data/Intiate_Simulation/Lincoln_Rest_of_County_Demographic_Data.csv")
#Save summary information for start of analysis
saveRDS(INTIATE_OTHER ,"Data/Cleaned_Data/Intiate_Simulation/Lincoln_Rest_of_County_Summary_Start_Data.Rds")
write_csv(INTIATE_OTHER ,"Data/Cleaned_Data/Intiate_Simulation/Lincoln_Rest_of_County_Summary_Start_Data.csv")
#Data sets needed to start a simulation for all the county (includes Kemmerer)
ST_BIRTH_ALL <- round(sum((LIN_DEMOGRAPHICS_RECENT %>% filter(Age==0))[4:5]))
ST_BIRTH_TWO_PREV_ALL <- round(sum((LIN_DEMOGRAPHICS_RECENT %>% filter(Age==1))[4:5]))
INTIATE_ALL <- LIN_DEMOGRAPHICS_RECENT %>% mutate(Male_Window=Age>=18 & Age<=30,Female_Window=Age>=18 & Age<=28) %>% group_by(County,Year) %>% summarize(Female_Birth_Group=sum(Num_Female*Female_Window),Male_Birth_Group=sum(Num_Male*Male_Window),Min_Birth_Group=ifelse(Female_Birth_Group<Male_Birth_Group,Female_Birth_Group,Male_Birth_Group),PREV_BIRTH=ST_BIRTH_ALL,PREV_TWO_BIRTH=ST_BIRTH_TWO_PREV_ALL,Population=CURRENT_KEM_POP) %>% mutate(Births=NA,Deaths=NA,Migration=NA) %>% select(Year,County,Population,Births,Deaths,Migration,Min_Birth_Group,PREV_BIRTH,PREV_TWO_BIRTH) %>% ungroup
#Save detailed demographics for start of analysis
saveRDS(LIN_DEMOGRAPHICS_RECENT,"Data/Cleaned_Data/Intiate_Simulation/Lincoln_All_County_Demographic_Data.Rds")
write_csv(LIN_DEMOGRAPHICS_RECENT,"Data/Cleaned_Data/Intiate_Simulation/Lincoln_All_County_Demographic_Data.csv")
#Save summary information for start of analysis
saveRDS(INTIATE_ALL ,"Data/Cleaned_Data/Intiate_Simulation/Lincoln_All_County_Summary_Start_Data.Rds")
write_csv(INTIATE_ALL ,"Data/Cleaned_Data/Intiate_Simulation/Lincoln_All_County_Summary_Start_Data.csv")
#sum(LIN_OTHER_DEMOGRAPHICS[,4:5] )+sum(KEM_DEMOGRAPHICS[,4:5])
###Make a population Pyramid Graph
PY_KEM_DATA <- KEM_DEMOGRAPHICS %>% mutate(County='Kemmerer') %>% pivot_longer(cols=c(Num_Male,Num_Female),names_to="Sex",values_to="Population") %>% mutate(Sex=ifelse(Sex=='Num_Male','Male','Female'))
PY_LN_DATA <- readRDS("Data/Cleaned_Data/Wyoming_County_Demographic_Data.Rds") %>% filter(County=='Lincoln',Year==max(Year))%>% pivot_longer(cols=c(Num_Male,Num_Female),names_to="Sex",values_to="Population") %>% mutate(Sex=ifelse(Sex=='Num_Male','Male','Female'))
@ -44,13 +79,23 @@ PY_LN_DATA$Percent <- PY_LN_DATA$Population/LN_ONLY_POP
KEM_ONLY_POP <- sum(PY_KEM_DATA$Population)
PY_KEM_DATA$Percent <- PY_KEM_DATA$Population/KEM_ONLY_POP
PY_DATA <- rbind(PY_LN_DATA,PY_KEM_DATA) %>% mutate(Population=ifelse(County=='Kemmerer',Population,-Population),'Percent Population'=ifelse(County=='Kemmerer',Percent,-Percent),Age_Numeric=Age,Age=as.character(Age))
PY_DATA <- rbind(PY_LN_DATA,PY_KEM_DATA) %>% mutate(Population=ifelse(County=='Kemmerer',Population,-Population),'Percent of Population'=ifelse(County=='Kemmerer',Percent,-Percent),Age_Numeric=Age,Age=as.character(Age))
PY_DATA[PY_DATA$Age=='85',"Age"] <- ">84"
ORD <- PY_DATA[,c("Age_Numeric","Age")] %>% unique %>% arrange(Age_Numeric) %>% pull(Age)
PY_DATA$Age <- factor(PY_DATA$Age,levels=ORD)
RANGE <- c(pretty(range(PY_DATA$`Percent Population`),n=8))
RANGE <- c(pretty(range(PY_DATA$`Percent of Population`),n=4))
LAB <- percent(abs(RANGE),accuracy=0.1 )
POP_PYRAMID <- ggplot(PY_DATA,aes(y=factor(Age),x=`Percent Population`,fill=County))+geom_col() +scale_x_continuous(breaks = RANGE,labels = LAB)+facet_grid(~Sex)
POP_PYRAMID
PY_DATA
PY_DATA <- PY_DATA %>% mutate(Region=ifelse(County=='Lincoln',"Rest of Lincoln County","Kemmerer & Diamondville"))
PY_DATA$Sex <- ifelse(PY_DATA$Sex=='Male','Men','Women')
ORDER <- PY_DATA$Sex %>% unique
PY_DATA$Sex <- factor(PY_DATA$Sex,levels=ORDER)
POP_PYRAMID <- ggplot(PY_DATA,aes(y=factor(Age),x=`Percent of Population`,fill=Region))+geom_col() +scale_x_continuous(breaks = RANGE,labels = LAB)+facet_grid(~Sex)+ylab("Age")+ theme_bw()+ theme(axis.text = element_text(size = 10),legend.position = "top",legend.text=element_text(size=14),legend.title = element_blank(),axis.title=element_text(size=18),strip.text = element_text(size = 14))
dir.create(FIG_DIR ,showWarnings=FALSE)
png(paste0(FIG_DIR,"/Population_Pyramid.png"), res = 600, width = 8.27, height = 11, units = "in")
POP_PYRAMID
dev.off()