Cleanup and working on birth reg

This commit is contained in:
Alex 2025-11-07 18:32:24 -07:00
parent 89da07fdae
commit 9d0ba09898
29 changed files with 110 additions and 128458 deletions

2
.gitignore vendored
View File

@ -1,5 +1,7 @@
# ---> R
#
Data/Raw_Data/Population/
Data/Raw_Data/Demographics/
*.png
*.csv
Data/Cleaned_Data/

View File

@ -1,33 +0,0 @@
##########################Model Population Trends
##Run Regression
#Pull in Demographic data and create categories for key groups in the regression, male/female population with high fertility, children under one and two (but not zero). This data is broken down by each age group so aggregate to the county, year level for the final regression.
#Fertility age bounds were informed by the regression found in the file ./Scripts/Other_Analysis/Select_Range_of_Male_Female_Fertility.r Which qualitatively supports that the number of people in these age ranges (18-28 Women, 18-30 Men) have the most significance in predicting birth rates. These two are combined into one variable which represent the minimum number of people in the key fertility window between the sexes, this is the binding fertility constraint and has more explanatory power than including either the number of men or women in the fertility window alone, providing a good trade off for including more variables or reducing variance.
DEMOGRAPHIC_DATA <- readRDS("Data/Cleaned_Data/Wyoming_County_Demographic_Data.Rds") %>% mutate(Male_Window=Age>=18 & Age<=30,Female_Window=Age>=18 & Age<=28) %>% group_by(County,Year) %>% summarize(Female_Birth_Group=sum(Num_Female*Female_Window),Male_Birth_Group=sum(Num_Male*Male_Window),Min_Birth_Group=ifelse(Female_Birth_Group<Male_Birth_Group,Female_Birth_Group,Male_Birth_Group))
#Extract the population trend data to connect with demographics (Population,births,deaths)
POP_DATA <- readRDS("Data/Cleaned_Data/Wyoming_County_Population.Rds") %>% mutate(LN=ifelse(County=="Lincoln",1,0))
#Merger the two data sets and drop any records that cannot be used in the regression (this makes the "predict" function output the right number of records)
REG_DATA <- POP_DATA %>% full_join(DEMOGRAPHIC_DATA)
REG_DATA <- REG_DATA %>% group_by(County) %>% mutate(PREV_BIRTH=lag(Births),PREV_TWO_BIRTH=lag(Births,2)) %>% ungroup %>% filter(!is.na(PREV_TWO_BIRTH),!is.na(Min_Birth_Group))
REG_DATA$County <- factor(REG_DATA$County)
FIRST_PREDICT_YEAR_POPULATION_DATA <- REG_DATA %>% filter(Year==2023,County=='Lincoln') %>% select(-LN,-Female_Birth_Group,-Male_Birth_Group) #Store the data set of only the first year needing a birth forecast, to start the birth Monte Carlo simulations.
REG_DATA <- REG_DATA %>% filter(!is.na(Births)) #Remove any values with missing births for a simpler regression which includes only complete data
###Predict the number of Births
MOD_BIRTHS <- feols(log(Births)~log(PREV_BIRTH)+log(PREV_TWO_BIRTH)+log(Min_Birth_Group)+Year*County,cluster=~Year+County, data=REG_DATA ) #Lower AIC
#AIC(MOD_BIRTHS)
#MOD_BIRTHS <- feols(log(Births)~log(PREV_BIRTH)+log(Min_Birth_Group)+Year*County,cluster=~Year+County, data=REG_DATA )
#AIC(MOD_BIRTHS)
#Optional: Review the ACF and PACF for validity. Model made on October 24nd appears to have uncorrelated lags of residuals accept year three.
RES_DATA <- REG_DATA #Data to create visuals with, without changing the main file. Can be used for ggplot, or residual tests
RES_DATA$RESID <- resid(MOD_BIRTHS)
acf(RES_DATA %>% pull(RESID))
pacf(RES_DATA %>% pull(RESID))
saveRDS(RES_DATA,"Data/Regression_Results/Birth_Regression_Data_Set.Rds")
saveRDS(MOD_BIRTHS,BIRTH_RATE_REG_RESULTS)
saveRDS(FIRST_PREDICT_YEAR_POPULATION_DATA,START_DEMOGRAPHIC_DATA) #Save the cleaned data set for later use when starting the simulation.
#Cleanup data no longer needed, and save some RAM
rm(POP_DATA,DEMOGRAPHIC_DATA,REG_DATA)
gc()

View File

@ -1,87 +0,0 @@
County,Year,Age,Num_Male,Num_Female
Kemmerer,2024,0,10,19
Kemmerer,2024,1,11,26
Kemmerer,2024,2,10,22
Kemmerer,2024,3,12,26
Kemmerer,2024,4,10,24
Kemmerer,2024,5,15,17
Kemmerer,2024,6,19,19
Kemmerer,2024,7,21,22
Kemmerer,2024,8,17,19
Kemmerer,2024,9,21,20
Kemmerer,2024,10,23,20
Kemmerer,2024,11,25,20
Kemmerer,2024,12,25,19
Kemmerer,2024,13,24,23
Kemmerer,2024,14,27,24
Kemmerer,2024,15,14,13
Kemmerer,2024,16,14,13
Kemmerer,2024,17,15,12
Kemmerer,2024,18,8,8
Kemmerer,2024,19,7,6
Kemmerer,2024,20,9,28
Kemmerer,2024,21,0,6
Kemmerer,2024,22,10,16
Kemmerer,2024,23,9,14
Kemmerer,2024,24,11,14
Kemmerer,2024,25,14,14
Kemmerer,2024,26,13,15
Kemmerer,2024,27,13,14
Kemmerer,2024,28,9,14
Kemmerer,2024,29,13,16
Kemmerer,2024,30,10,16
Kemmerer,2024,31,11,16
Kemmerer,2024,32,9,17
Kemmerer,2024,33,10,17
Kemmerer,2024,34,10,21
Kemmerer,2024,35,23,14
Kemmerer,2024,36,24,15
Kemmerer,2024,37,21,16
Kemmerer,2024,38,23,17
Kemmerer,2024,39,29,16
Kemmerer,2024,40,18,12
Kemmerer,2024,41,18,13
Kemmerer,2024,42,17,13
Kemmerer,2024,43,18,15
Kemmerer,2024,44,20,15
Kemmerer,2024,45,10,21
Kemmerer,2024,46,11,17
Kemmerer,2024,47,11,17
Kemmerer,2024,48,10,16
Kemmerer,2024,49,8,17
Kemmerer,2024,50,12,17
Kemmerer,2024,51,13,19
Kemmerer,2024,52,13,21
Kemmerer,2024,53,12,21
Kemmerer,2024,54,10,18
Kemmerer,2024,55,27,18
Kemmerer,2024,56,28,19
Kemmerer,2024,57,25,20
Kemmerer,2024,58,30,22
Kemmerer,2024,59,33,22
Kemmerer,2024,60,25,14
Kemmerer,2024,61,26,15
Kemmerer,2024,62,23,17
Kemmerer,2024,63,23,17
Kemmerer,2024,64,24,17
Kemmerer,2024,65,18,31
Kemmerer,2024,66,20,32
Kemmerer,2024,67,32,32
Kemmerer,2024,68,32,33
Kemmerer,2024,69,29,31
Kemmerer,2024,70,27,15
Kemmerer,2024,71,26,15
Kemmerer,2024,72,22,13
Kemmerer,2024,73,20,12
Kemmerer,2024,74,20,12
Kemmerer,2024,75,27,9
Kemmerer,2024,76,32,9
Kemmerer,2024,77,19,5
Kemmerer,2024,78,17,5
Kemmerer,2024,79,16,5
Kemmerer,2024,80,8,6
Kemmerer,2024,81,5,5
Kemmerer,2024,82,4,5
Kemmerer,2024,83,4,4
Kemmerer,2024,84,3,4
Kemmerer,2024,85,21,18
1 County Year Age Num_Male Num_Female
2 Kemmerer 2024 0 10 19
3 Kemmerer 2024 1 11 26
4 Kemmerer 2024 2 10 22
5 Kemmerer 2024 3 12 26
6 Kemmerer 2024 4 10 24
7 Kemmerer 2024 5 15 17
8 Kemmerer 2024 6 19 19
9 Kemmerer 2024 7 21 22
10 Kemmerer 2024 8 17 19
11 Kemmerer 2024 9 21 20
12 Kemmerer 2024 10 23 20
13 Kemmerer 2024 11 25 20
14 Kemmerer 2024 12 25 19
15 Kemmerer 2024 13 24 23
16 Kemmerer 2024 14 27 24
17 Kemmerer 2024 15 14 13
18 Kemmerer 2024 16 14 13
19 Kemmerer 2024 17 15 12
20 Kemmerer 2024 18 8 8
21 Kemmerer 2024 19 7 6
22 Kemmerer 2024 20 9 28
23 Kemmerer 2024 21 0 6
24 Kemmerer 2024 22 10 16
25 Kemmerer 2024 23 9 14
26 Kemmerer 2024 24 11 14
27 Kemmerer 2024 25 14 14
28 Kemmerer 2024 26 13 15
29 Kemmerer 2024 27 13 14
30 Kemmerer 2024 28 9 14
31 Kemmerer 2024 29 13 16
32 Kemmerer 2024 30 10 16
33 Kemmerer 2024 31 11 16
34 Kemmerer 2024 32 9 17
35 Kemmerer 2024 33 10 17
36 Kemmerer 2024 34 10 21
37 Kemmerer 2024 35 23 14
38 Kemmerer 2024 36 24 15
39 Kemmerer 2024 37 21 16
40 Kemmerer 2024 38 23 17
41 Kemmerer 2024 39 29 16
42 Kemmerer 2024 40 18 12
43 Kemmerer 2024 41 18 13
44 Kemmerer 2024 42 17 13
45 Kemmerer 2024 43 18 15
46 Kemmerer 2024 44 20 15
47 Kemmerer 2024 45 10 21
48 Kemmerer 2024 46 11 17
49 Kemmerer 2024 47 11 17
50 Kemmerer 2024 48 10 16
51 Kemmerer 2024 49 8 17
52 Kemmerer 2024 50 12 17
53 Kemmerer 2024 51 13 19
54 Kemmerer 2024 52 13 21
55 Kemmerer 2024 53 12 21
56 Kemmerer 2024 54 10 18
57 Kemmerer 2024 55 27 18
58 Kemmerer 2024 56 28 19
59 Kemmerer 2024 57 25 20
60 Kemmerer 2024 58 30 22
61 Kemmerer 2024 59 33 22
62 Kemmerer 2024 60 25 14
63 Kemmerer 2024 61 26 15
64 Kemmerer 2024 62 23 17
65 Kemmerer 2024 63 23 17
66 Kemmerer 2024 64 24 17
67 Kemmerer 2024 65 18 31
68 Kemmerer 2024 66 20 32
69 Kemmerer 2024 67 32 32
70 Kemmerer 2024 68 32 33
71 Kemmerer 2024 69 29 31
72 Kemmerer 2024 70 27 15
73 Kemmerer 2024 71 26 15
74 Kemmerer 2024 72 22 13
75 Kemmerer 2024 73 20 12
76 Kemmerer 2024 74 20 12
77 Kemmerer 2024 75 27 9
78 Kemmerer 2024 76 32 9
79 Kemmerer 2024 77 19 5
80 Kemmerer 2024 78 17 5
81 Kemmerer 2024 79 16 5
82 Kemmerer 2024 80 8 6
83 Kemmerer 2024 81 5 5
84 Kemmerer 2024 82 4 5
85 Kemmerer 2024 83 4 4
86 Kemmerer 2024 84 3 4
87 Kemmerer 2024 85 21 18

View File

@ -1,2 +0,0 @@
Year,County,Population,Births,Deaths,Migration,Min_Birth_Group,PREV_BIRTH,PREV_TWO_BIRTH
2024,Kemmerer,2895,NA,NA,NA,126,29,37
1 Year County Population Births Deaths Migration Min_Birth_Group PREV_BIRTH PREV_TWO_BIRTH
2 2024 Kemmerer 2895 NA NA NA 126 29 37

File diff suppressed because it is too large Load Diff

View File

@ -1,17 +0,0 @@
County,Sex,Min_Age,Max_Age,Death_Rate,Rate_SD,Imparted_Rate,Trend,Trend_SD,Imparted_Trend
Lincoln,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Lincoln,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Lincoln,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Lincoln,Female,20,39,0.001086,5.5867346938775525e-5,TRUE,1e-5,4.3367346938775506e-6,TRUE
Lincoln,Female,40,64,0.0033410000000000002,4.6096938775510205e-4,FALSE,9e-6,9.948979591836735e-6,FALSE
Lincoln,Female,65,74,0.009472999999999999,0.0012964285714285714,FALSE,-1.7e-5,1.6326530612244897e-5,TRUE
Lincoln,Female,75,84,0.043425,0.004336734693877551,FALSE,-2e-6,8.418367346938775e-6,FALSE
Lincoln,Female,85,Inf,0.145245,0.013969642857142858,FALSE,-6e-6,6.3775510204081635e-6,FALSE
Lincoln,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Lincoln,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Lincoln,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Lincoln,Male,20,39,0.00293,5.543367346938776e-4,FALSE,5.6e-5,3.214285714285715e-5,TRUE
Lincoln,Male,40,64,0.005426,5.724489795918367e-4,FALSE,5e-6,8.163265306122448e-6,FALSE
Lincoln,Male,65,74,0.017908,0.0017096938775510205,FALSE,-1.5e-5,1.0459183673469388e-5,FALSE
Lincoln,Male,75,84,0.049228999999999995,0.004641581632653062,FALSE,-1.5e-5,7.397959183673469e-6,FALSE
Lincoln,Male,85,Inf,0.15788,0.017563265306122452,FALSE,-1.54e-4,6.173469387755103e-5,FALSE
1 County Sex Min_Age Max_Age Death_Rate Rate_SD Imparted_Rate Trend Trend_SD Imparted_Trend
2 Lincoln Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
3 Lincoln Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
4 Lincoln Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
5 Lincoln Female 20 39 0.001086 5.5867346938775525e-5 TRUE 1e-5 4.3367346938775506e-6 TRUE
6 Lincoln Female 40 64 0.0033410000000000002 4.6096938775510205e-4 FALSE 9e-6 9.948979591836735e-6 FALSE
7 Lincoln Female 65 74 0.009472999999999999 0.0012964285714285714 FALSE -1.7e-5 1.6326530612244897e-5 TRUE
8 Lincoln Female 75 84 0.043425 0.004336734693877551 FALSE -2e-6 8.418367346938775e-6 FALSE
9 Lincoln Female 85 Inf 0.145245 0.013969642857142858 FALSE -6e-6 6.3775510204081635e-6 FALSE
10 Lincoln Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
11 Lincoln Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
12 Lincoln Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
13 Lincoln Male 20 39 0.00293 5.543367346938776e-4 FALSE 5.6e-5 3.214285714285715e-5 TRUE
14 Lincoln Male 40 64 0.005426 5.724489795918367e-4 FALSE 5e-6 8.163265306122448e-6 FALSE
15 Lincoln Male 65 74 0.017908 0.0017096938775510205 FALSE -1.5e-5 1.0459183673469388e-5 FALSE
16 Lincoln Male 75 84 0.049228999999999995 0.004641581632653062 FALSE -1.5e-5 7.397959183673469e-6 FALSE
17 Lincoln Male 85 Inf 0.15788 0.017563265306122452 FALSE -1.54e-4 6.173469387755103e-5 FALSE

View File

@ -1,401 +0,0 @@
County,Sex,Min_Age,Max_Age,Death_Rate,Rate_SD,Imparted_Rate,Trend,Trend_SD,Imparted_Trend
Wyoming,Female,0,0,0.005673999999999999,6.415816326530612e-4,FALSE,5e-6,6.122448979591837e-6,TRUE
United States,Female,0,0,0.005039,2.3724489795918395e-5,FALSE,5e-6,6.122448979591837e-6,FALSE
Laramie,Female,0,0,0.00635,0.0016502551020408163,FALSE,5e-6,6.122448979591837e-6,TRUE
Albany,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Big Horn,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Campbell,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Carbon,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Converse,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Crook,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Fremont,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Goshen,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Hot Springs,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Johnson,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Lincoln,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Natrona,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Niobrara,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Park,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Platte,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Sheridan,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Sublette,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Sweetwater,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Teton,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Uinta,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Washakie,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Weston,Female,0,0,0.005673999999999999,6.415816326530612e-4,TRUE,5e-6,6.122448979591837e-6,TRUE
Wyoming,Female,1,9,1.79e-4,3.64795918367347e-5,FALSE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
United States,Female,1,9,1.5800000000000002e-4,1.2755102040816327e-6,FALSE,3.7999999999999995e-5,9.693877551020408e-6,FALSE
Albany,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Big Horn,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Campbell,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Carbon,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Converse,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Crook,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Fremont,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Goshen,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Hot Springs,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Johnson,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Laramie,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Lincoln,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Natrona,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Niobrara,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Park,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Platte,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Sheridan,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Sublette,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Sweetwater,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Teton,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Uinta,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Washakie,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Weston,Female,1,9,1.79e-4,3.64795918367347e-5,TRUE,3.7999999999999995e-5,9.693877551020408e-6,TRUE
Wyoming,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,FALSE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
United States,Female,10,19,2.2600000000000002e-4,1.5306122448979538e-6,FALSE,2.2000000000000003e-5,4.846938775510204e-6,FALSE
Albany,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Big Horn,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Campbell,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Carbon,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Converse,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Crook,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Fremont,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Goshen,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Hot Springs,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Johnson,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Laramie,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Lincoln,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Natrona,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Niobrara,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Park,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Platte,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Sheridan,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Sublette,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Sweetwater,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Teton,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Uinta,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Washakie,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Weston,Female,10,19,2.9800000000000003e-4,4.132653061224491e-5,TRUE,2.2000000000000003e-5,4.846938775510204e-6,TRUE
Wyoming,Female,20,39,0.001086,5.5867346938775525e-5,FALSE,1e-5,4.3367346938775506e-6,FALSE
United States,Female,20,39,9.96e-4,2.040816326530605e-6,FALSE,0,9.948979591836735e-6,FALSE
Fremont,Female,20,39,0.003397,4.048469387755102e-4,FALSE,1e-5,4.3367346938775506e-6,TRUE
Sweetwater,Female,20,39,0.001521,2.4821428571428575e-4,FALSE,1e-5,4.3367346938775506e-6,TRUE
Park,Female,20,39,0.001124,2.834183673469388e-4,FALSE,1e-5,4.3367346938775506e-6,TRUE
Natrona,Female,20,39,0.0011070000000000001,1.5127551020408165e-4,FALSE,1e-5,4.3367346938775506e-6,TRUE
Laramie,Female,20,39,0.001044,1.3112244897959185e-4,FALSE,1e-5,4.3367346938775506e-6,TRUE
Campbell,Female,20,39,8.79e-4,1.8290816326530613e-4,FALSE,1e-5,4.3367346938775506e-6,TRUE
Albany,Female,20,39,0.001086,5.5867346938775525e-5,TRUE,1e-5,4.3367346938775506e-6,TRUE
Big Horn,Female,20,39,0.001086,5.5867346938775525e-5,TRUE,1e-5,4.3367346938775506e-6,TRUE
Carbon,Female,20,39,0.001086,5.5867346938775525e-5,TRUE,1e-5,4.3367346938775506e-6,TRUE
Converse,Female,20,39,0.001086,5.5867346938775525e-5,TRUE,1e-5,4.3367346938775506e-6,TRUE
Crook,Female,20,39,0.001086,5.5867346938775525e-5,TRUE,1e-5,4.3367346938775506e-6,TRUE
Goshen,Female,20,39,0.001086,5.5867346938775525e-5,TRUE,1e-5,4.3367346938775506e-6,TRUE
Hot Springs,Female,20,39,0.001086,5.5867346938775525e-5,TRUE,1e-5,4.3367346938775506e-6,TRUE
Johnson,Female,20,39,0.001086,5.5867346938775525e-5,TRUE,1e-5,4.3367346938775506e-6,TRUE
Lincoln,Female,20,39,0.001086,5.5867346938775525e-5,TRUE,1e-5,4.3367346938775506e-6,TRUE
Niobrara,Female,20,39,0.001086,5.5867346938775525e-5,TRUE,1e-5,4.3367346938775506e-6,TRUE
Platte,Female,20,39,0.001086,5.5867346938775525e-5,TRUE,1e-5,4.3367346938775506e-6,TRUE
Sheridan,Female,20,39,0.001086,5.5867346938775525e-5,TRUE,1e-5,4.3367346938775506e-6,TRUE
Sublette,Female,20,39,0.001086,5.5867346938775525e-5,TRUE,1e-5,4.3367346938775506e-6,TRUE
Teton,Female,20,39,0.001086,5.5867346938775525e-5,TRUE,1e-5,4.3367346938775506e-6,TRUE
Uinta,Female,20,39,0.001086,5.5867346938775525e-5,TRUE,1e-5,4.3367346938775506e-6,TRUE
Washakie,Female,20,39,0.001086,5.5867346938775525e-5,TRUE,1e-5,4.3367346938775506e-6,TRUE
Weston,Female,20,39,0.001086,5.5867346938775525e-5,TRUE,1e-5,4.3367346938775506e-6,TRUE
Wyoming,Female,40,64,0.004525,1.0025510204081622e-4,FALSE,-3e-6,1.1224489795918369e-5,FALSE
United States,Female,40,64,0.0040869999999999995,3.826530612244898e-6,FALSE,-8e-6,7.653061224489796e-6,FALSE
Fremont,Female,40,64,0.007469,5.158163265306123e-4,FALSE,2.5e-5,7.653061224489796e-6,FALSE
Uinta,Female,40,64,0.006474,6.68877551020408e-4,FALSE,6.3e-5,4.2602040816326545e-5,FALSE
Hot Springs,Female,40,64,0.006397000000000001,0.001375,FALSE,-3e-6,1.1224489795918369e-5,TRUE
Sweetwater,Female,40,64,0.005991,4.3214285714285707e-4,FALSE,5.1e-5,3.188775510204082e-5,FALSE
Carbon,Female,40,64,0.00577,7.267857142857144e-4,FALSE,-3e-6,1.1224489795918369e-5,TRUE
Goshen,Female,40,64,0.005709,8.801020408163265e-4,FALSE,-3e-6,1.1224489795918369e-5,TRUE
Natrona,Female,40,64,0.0049960000000000004,2.816326530612246e-4,FALSE,1.1000000000000001e-5,1.9387755102040817e-5,FALSE
Converse,Female,40,64,0.004393,6.57908163265306e-4,FALSE,-3e-6,1.1224489795918369e-5,TRUE
Platte,Female,40,64,0.004347,8.665816326530613e-4,FALSE,-3e-6,1.1224489795918369e-5,TRUE
Washakie,Female,40,64,0.00421,8.451530612244897e-4,FALSE,-3e-6,1.1224489795918369e-5,TRUE
Laramie,Female,40,64,0.004162,2.3010204081632652e-4,FALSE,-1e-6,4.846938775510204e-6,FALSE
Park,Female,40,64,0.004129,4.392857142857142e-4,FALSE,1e-5,1.5051020408163266e-5,FALSE
Campbell,Female,40,64,0.004102,3.423469387755102e-4,FALSE,-3e-6,7.908163265306124e-6,FALSE
Sheridan,Female,40,64,0.003923,3.895408163265306e-4,FALSE,1.1000000000000001e-5,1.0204081632653061e-5,FALSE
Big Horn,Female,40,64,0.0037739999999999996,6.591836734693878e-4,FALSE,-3e-6,1.1224489795918369e-5,TRUE
Crook,Female,40,64,0.003632,9.025510204081632e-4,FALSE,-3e-6,1.1224489795918369e-5,TRUE
Albany,Female,40,64,0.0035910000000000004,4.1428571428571426e-4,FALSE,0,7.397959183673469e-6,FALSE
Johnson,Female,40,64,0.003374,7.191326530612244e-4,FALSE,-3e-6,1.1224489795918369e-5,TRUE
Lincoln,Female,40,64,0.0033410000000000002,4.6096938775510205e-4,FALSE,9e-6,9.948979591836735e-6,FALSE
Sublette,Female,40,64,0.002813,6.80612244897959e-4,FALSE,-3e-6,1.1224489795918369e-5,TRUE
Teton,Female,40,64,0.001251,2.670918367346939e-4,FALSE,-3e-6,1.1224489795918369e-5,TRUE
Niobrara,Female,40,64,0.004525,1.0025510204081622e-4,TRUE,-3e-6,1.1224489795918369e-5,TRUE
Weston,Female,40,64,0.004525,1.0025510204081622e-4,TRUE,-3e-6,1.1224489795918369e-5,TRUE
Wyoming,Female,65,74,0.016364,3.255102040816324e-4,FALSE,-1.7e-5,1.6326530612244897e-5,FALSE
United States,Female,65,74,0.015801,1.352040816326519e-5,FALSE,-1.1000000000000001e-5,6.632653061224491e-6,FALSE
Big Horn,Female,65,74,0.022495,0.0026020408163265306,FALSE,1.5e-5,1.2755102040816327e-5,FALSE
Fremont,Female,65,74,0.019869,0.0013096938775510208,FALSE,-3e-6,7.653061224489796e-6,FALSE
Natrona,Female,65,74,0.019782,0.001003571428571428,FALSE,0,5.102040816326531e-6,FALSE
Laramie,Female,65,74,0.019148,8.607142857142859e-4,FALSE,7.2e-5,3.112244897959183e-5,FALSE
Sweetwater,Female,65,74,0.018866,0.0014732142857142858,FALSE,-9e-6,6.3775510204081635e-6,FALSE
Campbell,Female,65,74,0.017571,0.0014079081632653063,FALSE,-1.2e-5,8.418367346938776e-6,FALSE
Hot Springs,Female,65,74,0.017042,0.003117091836734694,FALSE,-1.7e-5,1.6326530612244897e-5,TRUE
Carbon,Female,65,74,0.016312,0.0021163265306122447,FALSE,-1.7e-5,1.6326530612244897e-5,TRUE
Weston,Female,65,74,0.016185,0.002942091836734694,FALSE,-1.7e-5,1.6326530612244897e-5,TRUE
Converse,Female,65,74,0.016108,0.0022005102040816332,FALSE,-1.7e-5,1.6326530612244897e-5,TRUE
Goshen,Female,65,74,0.015045,0.0020487244897959183,FALSE,-1.7e-5,1.6326530612244897e-5,TRUE
Uinta,Female,65,74,0.014986,0.0017719387755102038,FALSE,-1.7e-5,1.6326530612244897e-5,TRUE
Washakie,Female,65,74,0.014965,0.0025765306122448976,FALSE,-1.7e-5,1.6326530612244897e-5,TRUE
Crook,Female,65,74,0.014662,0.0025719387755102035,FALSE,-1.7e-5,1.6326530612244897e-5,TRUE
Platte,Female,65,74,0.014537000000000001,0.0022316326530612243,FALSE,-1.7e-5,1.6326530612244897e-5,TRUE
Park,Female,65,74,0.014377000000000001,0.0011780612244897959,FALSE,-7e-6,5.612244897959184e-6,FALSE
Albany,Female,65,74,0.01376,0.0013933673469387756,FALSE,-2.2000000000000003e-5,1.2499999999999997e-5,FALSE
Sheridan,Female,65,74,0.013214,0.0011525510204081631,FALSE,-1.3000000000000001e-5,8.673469387755101e-6,FALSE
Johnson,Female,65,74,0.011374,0.0019609693877551022,FALSE,-1.7e-5,1.6326530612244897e-5,TRUE
Sublette,Female,65,74,0.010197999999999999,0.0020364795918367345,FALSE,-1.7e-5,1.6326530612244897e-5,TRUE
Lincoln,Female,65,74,0.009472999999999999,0.0012964285714285714,FALSE,-1.7e-5,1.6326530612244897e-5,TRUE
Teton,Female,65,74,0.0054589999999999994,0.0010316326530612244,FALSE,-1.7e-5,1.6326530612244897e-5,TRUE
Niobrara,Female,65,74,0.016364,3.255102040816324e-4,TRUE,-1.7e-5,1.6326530612244897e-5,TRUE
Wyoming,Female,75,84,0.04426,7.709183673469382e-4,FALSE,1.5e-5,1.1989795918367348e-5,FALSE
United States,Female,75,84,0.041162,2.984693877551206e-5,FALSE,-1.7e-5,6.122448979591838e-6,FALSE
Weston,Female,75,84,0.064473,0.008212244897959181,FALSE,1.5e-5,1.1989795918367348e-5,TRUE
Hot Springs,Female,75,84,0.058228,0.007786479591836735,FALSE,1.2e-5,1.1479591836734695e-5,FALSE
Big Horn,Female,75,84,0.05412,0.005449489795918368,FALSE,1.5e-5,1.1989795918367348e-5,TRUE
Fremont,Female,75,84,0.052425,0.0030892857142857146,FALSE,4e-6,6.3775510204081635e-6,FALSE
Natrona,Female,75,84,0.049432,0.0023053571428571424,FALSE,2e-6,3.826530612244898e-6,FALSE
Campbell,Female,75,84,0.049208,0.003808163265306123,FALSE,-5e-6,6.887755102040817e-6,FALSE
Laramie,Female,75,84,0.048791,0.0019788265306122446,FALSE,2e-6,4.336734693877551e-6,FALSE
Sweetwater,Female,75,84,0.047755,0.0035678571428571417,FALSE,-2e-6,6.3775510204081635e-6,FALSE
Converse,Female,75,84,0.046121999999999996,0.005119387755102041,FALSE,9e-6,8.92857142857143e-6,FALSE
Goshen,Female,75,84,0.044093999999999994,0.004294387755102041,FALSE,-2e-6,7.908163265306122e-6,FALSE
Niobrara,Female,75,84,0.04366,0.010155612244897957,FALSE,1.5e-5,1.1989795918367348e-5,TRUE
Lincoln,Female,75,84,0.043425,0.004336734693877551,FALSE,-2e-6,8.418367346938775e-6,FALSE
Platte,Female,75,84,0.04324600000000001,0.004982908163265305,FALSE,5e-6,7.142857142857143e-6,FALSE
Carbon,Female,75,84,0.042355,0.00491173469387755,FALSE,1.5e-5,1.1989795918367348e-5,TRUE
Albany,Female,75,84,0.040271,0.0034446428571428566,FALSE,-3e-6,8.418367346938775e-6,FALSE
Washakie,Female,75,84,0.039571999999999996,0.005434948979591836,FALSE,1.5e-5,1.1989795918367348e-5,TRUE
Sheridan,Female,75,84,0.038169,0.0027647959183673466,FALSE,-1.4e-5,6.122448979591837e-6,FALSE
Uinta,Female,75,84,0.037538,0.004328571428571428,FALSE,1.5e-5,1.1989795918367348e-5,TRUE
Park,Female,75,84,0.034838,0.0025653061224489796,FALSE,-1.3000000000000001e-5,6.3775510204081635e-6,FALSE
Johnson,Female,75,84,0.033609,0.0047066326530612245,FALSE,1.5e-5,1.1989795918367348e-5,TRUE
Crook,Female,75,84,0.032882,0.005749234693877551,FALSE,1.5e-5,1.1989795918367348e-5,TRUE
Sublette,Female,75,84,0.03058,0.004828826530612244,FALSE,1.5e-5,1.1989795918367348e-5,TRUE
Teton,Female,75,84,0.021231999999999997,0.002872959183673469,FALSE,1.5e-5,1.1989795918367348e-5,TRUE
Wyoming,Female,85,Inf,0.14438700000000002,0.0021448979591836763,FALSE,9e-6,1.1479591836734695e-5,FALSE
United States,Female,85,Inf,0.139983,8.39285714285705e-5,FALSE,-1.1000000000000001e-5,9.438775510204082e-6,FALSE
Hot Springs,Female,85,Inf,0.18055900000000003,0.01969591836734694,FALSE,2e-5,1.1989795918367348e-5,FALSE
Crook,Female,85,Inf,0.165957,0.020828061224489797,FALSE,9e-6,1.1479591836734695e-5,TRUE
Albany,Female,85,Inf,0.16516099999999997,0.011379336734693879,FALSE,1.8999999999999998e-5,2.3979591836734696e-5,FALSE
Campbell,Female,85,Inf,0.161304,0.011592091836734689,FALSE,-3e-6,6.887755102040817e-6,FALSE
Natrona,Female,85,Inf,0.156174,0.0059295918367346925,FALSE,1.4e-5,7.142857142857143e-6,FALSE
Washakie,Female,85,Inf,0.15390600000000002,0.015426020408163266,FALSE,0,8.418367346938775e-6,FALSE
Johnson,Female,85,Inf,0.152618,0.015923979591836737,FALSE,1.2e-5,7.908163265306122e-6,FALSE
Sweetwater,Female,85,Inf,0.149978,0.009936734693877554,FALSE,-5e-6,7.397959183673469e-6,FALSE
Sheridan,Female,85,Inf,0.14934799999999998,0.008692091836734691,FALSE,-8e-6,4.081632653061224e-6,FALSE
Goshen,Female,85,Inf,0.148905,0.011026530612244897,FALSE,1.1e-4,5.637755102040817e-5,FALSE
Laramie,Female,85,Inf,0.145436,0.005139795918367349,FALSE,5.3e-5,2.7295918367346937e-5,FALSE
Lincoln,Female,85,Inf,0.145245,0.013969642857142858,FALSE,-6e-6,6.3775510204081635e-6,FALSE
Big Horn,Female,85,Inf,0.143643,0.012999744897959188,FALSE,-1.3000000000000001e-5,6.3775510204081635e-6,FALSE
Converse,Female,85,Inf,0.140676,0.014763010204081628,FALSE,-6e-6,1.1989795918367346e-5,FALSE
Carbon,Female,85,Inf,0.138829,0.014641071428571427,FALSE,-1.7e-5,9.183673469387756e-6,FALSE
Fremont,Female,85,Inf,0.135523,0.007590051020408162,FALSE,-5e-6,4.591836734693877e-6,FALSE
Park,Female,85,Inf,0.135181,0.007483418367346939,FALSE,2e-6,6.122448979591837e-6,FALSE
Weston,Female,85,Inf,0.126442,0.015349744897959185,FALSE,9e-6,1.1479591836734695e-5,TRUE
Platte,Female,85,Inf,0.119165,0.012705357142857142,FALSE,-1.2e-5,1.1989795918367348e-5,FALSE
Niobrara,Female,85,Inf,0.11524,0.026242091836734698,FALSE,9e-6,1.1479591836734695e-5,TRUE
Teton,Female,85,Inf,0.11490299999999999,0.01195433673469388,FALSE,9e-6,1.1479591836734695e-5,TRUE
Uinta,Female,85,Inf,0.111856,0.011629846938775513,FALSE,-2.7000000000000002e-5,8.92857142857143e-6,FALSE
Sublette,Female,85,Inf,0.091725,0.015146428571428571,FALSE,9e-6,1.1479591836734695e-5,TRUE
Wyoming,Male,0,0,0.005242,5.926020408163265e-4,FALSE,-1e-5,2.040816326530612e-6,TRUE
United States,Male,0,0,0.005962,2.5255102040816556e-5,FALSE,-1e-5,2.040816326530612e-6,FALSE
Natrona,Male,0,0,0.0075320000000000005,0.0019571428571428574,FALSE,-1e-5,2.040816326530612e-6,TRUE
Laramie,Male,0,0,0.005385,0.0014459183673469385,FALSE,-1e-5,2.040816326530612e-6,TRUE
Albany,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Big Horn,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Campbell,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Carbon,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Converse,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Crook,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Fremont,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Goshen,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Hot Springs,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Johnson,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Lincoln,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Niobrara,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Park,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Platte,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Sheridan,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Sublette,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Sweetwater,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Teton,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Uinta,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Washakie,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Weston,Male,0,0,0.005242,5.926020408163265e-4,TRUE,-1e-5,2.040816326530612e-6,TRUE
Wyoming,Male,1,9,2.07e-4,3.775510204081633e-5,FALSE,4e-5,8.673469387755103e-6,TRUE
United States,Male,1,9,1.94e-4,1.2755102040816327e-6,FALSE,4e-5,8.673469387755103e-6,FALSE
Albany,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Big Horn,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Campbell,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Carbon,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Converse,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Crook,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Fremont,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Goshen,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Hot Springs,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Johnson,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Laramie,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Lincoln,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Natrona,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Niobrara,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Park,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Platte,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Sheridan,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Sublette,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Sweetwater,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Teton,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Uinta,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Washakie,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Weston,Male,1,9,2.07e-4,3.775510204081633e-5,TRUE,4e-5,8.673469387755103e-6,TRUE
Wyoming,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,FALSE,-1e-6,8.673469387755103e-6,FALSE
United States,Male,10,19,4.94e-4,2.040816326530605e-6,FALSE,3.2e-5,5.867346938775511e-6,FALSE
Fremont,Male,10,19,0.001368,3.25765306122449e-4,FALSE,-1e-6,8.673469387755103e-6,TRUE
Laramie,Male,10,19,7.559999999999999e-4,1.596938775510204e-4,FALSE,-1e-6,8.673469387755103e-6,TRUE
Natrona,Male,10,19,6.2e-4,1.6096938775510204e-4,FALSE,-1e-6,8.673469387755103e-6,TRUE
Albany,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Big Horn,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Campbell,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Carbon,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Converse,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Crook,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Goshen,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Hot Springs,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Johnson,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Lincoln,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Niobrara,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Park,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Platte,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Sheridan,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Sublette,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Sweetwater,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Teton,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Uinta,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Washakie,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Weston,Male,10,19,7.440000000000001e-4,6.224489795918366e-5,TRUE,-1e-6,8.673469387755103e-6,TRUE
Wyoming,Male,20,39,0.002489,8.086734693877556e-5,FALSE,5.6e-5,3.214285714285715e-5,FALSE
United States,Male,20,39,0.002212,3.316326530612274e-6,FALSE,1.2e-5,1.1224489795918369e-5,FALSE
Fremont,Male,20,39,0.005635,5.081632653061224e-4,FALSE,1.2e-5,9.183673469387756e-6,FALSE
Big Horn,Male,20,39,0.003754,8.112244897959184e-4,FALSE,5.6e-5,3.214285714285715e-5,TRUE
Uinta,Male,20,39,0.003661,5.752551020408163e-4,FALSE,5.6e-5,3.214285714285715e-5,TRUE
Sweetwater,Male,20,39,0.002951,3.3010204081632664e-4,FALSE,5.6e-5,3.214285714285715e-5,TRUE
Lincoln,Male,20,39,0.00293,5.543367346938776e-4,FALSE,5.6e-5,3.214285714285715e-5,TRUE
Converse,Male,20,39,0.002522,5.869897959183673e-4,FALSE,5.6e-5,3.214285714285715e-5,TRUE
Natrona,Male,20,39,0.002503,2.2015306122448976e-4,FALSE,4e-6,7.908163265306124e-6,FALSE
Campbell,Male,20,39,0.002484,2.795918367346939e-4,FALSE,5.6e-5,3.214285714285715e-5,TRUE
Laramie,Male,20,39,0.002457,1.8775510204081632e-4,FALSE,2.1000000000000002e-5,8.92857142857143e-6,FALSE
Carbon,Male,20,39,0.002385,5.056122448979592e-4,FALSE,5.6e-5,3.214285714285715e-5,TRUE
Sheridan,Male,20,39,0.001987,3.4693877551020415e-4,FALSE,5.6e-5,3.214285714285715e-5,TRUE
Park,Male,20,39,0.001602,3.3214285714285724e-4,FALSE,5.6e-5,3.214285714285715e-5,TRUE
Teton,Male,20,39,0.001359,3.025510204081633e-4,FALSE,5.6e-5,3.214285714285715e-5,TRUE
Albany,Male,20,39,0.0013169999999999998,2.3724489795918374e-4,FALSE,5.6e-5,3.214285714285715e-5,TRUE
Crook,Male,20,39,0.002489,8.086734693877556e-5,TRUE,5.6e-5,3.214285714285715e-5,TRUE
Goshen,Male,20,39,0.002489,8.086734693877556e-5,TRUE,5.6e-5,3.214285714285715e-5,TRUE
Hot Springs,Male,20,39,0.002489,8.086734693877556e-5,TRUE,5.6e-5,3.214285714285715e-5,TRUE
Johnson,Male,20,39,0.002489,8.086734693877556e-5,TRUE,5.6e-5,3.214285714285715e-5,TRUE
Niobrara,Male,20,39,0.002489,8.086734693877556e-5,TRUE,5.6e-5,3.214285714285715e-5,TRUE
Platte,Male,20,39,0.002489,8.086734693877556e-5,TRUE,5.6e-5,3.214285714285715e-5,TRUE
Sublette,Male,20,39,0.002489,8.086734693877556e-5,TRUE,5.6e-5,3.214285714285715e-5,TRUE
Washakie,Male,20,39,0.002489,8.086734693877556e-5,TRUE,5.6e-5,3.214285714285715e-5,TRUE
Weston,Male,20,39,0.002489,8.086734693877556e-5,TRUE,5.6e-5,3.214285714285715e-5,TRUE
Wyoming,Male,40,64,0.006889,1.2066326530612233e-4,FALSE,-2.1000000000000002e-5,1.3520408163265308e-5,FALSE
United States,Male,40,64,0.006857,4.846938775510436e-6,FALSE,-2e-6,7.397959183673469e-6,FALSE
Fremont,Male,40,64,0.010539000000000001,6.056122448979588e-4,FALSE,1.8e-5,8.673469387755101e-6,FALSE
Hot Springs,Male,40,64,0.008534,0.0016448979591836734,FALSE,-2.1000000000000002e-5,1.3520408163265308e-5,TRUE
Natrona,Male,40,64,0.008146,3.558673469387755e-4,FALSE,-1.2e-5,3.112244897959183e-5,FALSE
Uinta,Male,40,64,0.0077020000000000005,6.903061224489797e-4,FALSE,1.3000000000000001e-5,7.142857142857143e-6,FALSE
Carbon,Male,40,64,0.0075639999999999995,7.90561224489796e-4,FALSE,1.4e-5,8.418367346938775e-6,FALSE
Goshen,Male,40,64,0.007551,8.545918367346938e-4,FALSE,-2.1000000000000002e-5,1.3520408163265308e-5,TRUE
Sweetwater,Male,40,64,0.007405,4.6096938775510215e-4,FALSE,5.7e-5,2.9336734693877552e-5,FALSE
Laramie,Male,40,64,0.007075,2.9642857142857156e-4,FALSE,3e-6,4.591836734693877e-6,FALSE
Big Horn,Male,40,64,0.006978,9.219387755102041e-4,FALSE,-2.1000000000000002e-5,1.3520408163265308e-5,TRUE
Platte,Male,40,64,0.006887000000000001,0.0010561224489795918,FALSE,-2.1000000000000002e-5,1.3520408163265308e-5,TRUE
Crook,Male,40,64,0.00663,0.0011035714285714284,FALSE,-2.1000000000000002e-5,1.3520408163265308e-5,TRUE
Albany,Male,40,64,0.006542,5.428571428571431e-4,FALSE,5e-5,4.0816326530612245e-5,FALSE
Campbell,Male,40,64,0.006417999999999999,4.14795918367347e-4,FALSE,7.599999999999999e-5,4.7448979591836735e-5,FALSE
Park,Male,40,64,0.006296,5.252551020408163e-4,FALSE,1.7e-5,9.438775510204082e-6,FALSE
Washakie,Male,40,64,0.006225,9.89795918367347e-4,FALSE,-2.1000000000000002e-5,1.3520408163265308e-5,TRUE
Sheridan,Male,40,64,0.0059039999999999995,4.8545918367346927e-4,FALSE,-6e-6,5.102040816326531e-6,FALSE
Weston,Male,40,64,0.005822999999999999,9.770408163265307e-4,FALSE,-2.1000000000000002e-5,1.3520408163265308e-5,TRUE
Lincoln,Male,40,64,0.005426,5.724489795918367e-4,FALSE,5e-6,8.163265306122448e-6,FALSE
Converse,Male,40,64,0.005411,6.875e-4,FALSE,2.8e-5,2.6785714285714288e-5,FALSE
Sublette,Male,40,64,0.005327999999999999,8.441326530612244e-4,FALSE,-2.1000000000000002e-5,1.3520408163265308e-5,TRUE
Johnson,Male,40,64,0.004399,7.793367346938775e-4,FALSE,-2.1000000000000002e-5,1.3520408163265308e-5,TRUE
Teton,Male,40,64,0.002084,3.191326530612244e-4,FALSE,-2.1000000000000002e-5,1.3520408163265308e-5,TRUE
Niobrara,Male,40,64,0.006889,1.2066326530612233e-4,TRUE,-2.1000000000000002e-5,1.3520408163265308e-5,TRUE
Wyoming,Male,65,74,0.023544000000000002,3.8392857142857147e-4,FALSE,-1e-5,1.0459183673469388e-5,FALSE
United States,Male,65,74,0.024285,1.785714285714286e-5,FALSE,-1.1000000000000001e-5,6.3775510204081635e-6,FALSE
Hot Springs,Male,65,74,0.038213000000000004,0.004755357142857143,FALSE,6.8e-5,8.64795918367347e-5,FALSE
Carbon,Male,65,74,0.029925999999999998,0.0026982142857142856,FALSE,-4e-6,7.908163265306124e-6,FALSE
Goshen,Male,65,74,0.027766,0.00267295918367347,FALSE,1.2e-5,7.908163265306124e-6,FALSE
Platte,Male,65,74,0.027726999999999998,0.00297295918367347,FALSE,4.4000000000000006e-5,4.1581632653061226e-5,FALSE
Natrona,Male,65,74,0.027261,0.0011729591836734687,FALSE,5.6e-5,3.2908163265306125e-5,FALSE
Sweetwater,Male,65,74,0.02687,0.0016755102040816319,FALSE,2e-6,7.397959183673469e-6,FALSE
Fremont,Male,65,74,0.026595,0.0015433673469387756,FALSE,-6e-6,6.887755102040817e-6,FALSE
Laramie,Male,65,74,0.02637,0.0010372448979591835,FALSE,-1e-6,1.9387755102040817e-5,FALSE
Big Horn,Male,65,74,0.025905,0.0027229591836734697,FALSE,-1e-5,8.418367346938775e-6,FALSE
Sheridan,Male,65,74,0.025036,0.0015446428571428573,FALSE,3e-6,5.102040816326531e-6,FALSE
Washakie,Male,65,74,0.025003,0.003276020408163265,FALSE,-1e-5,1.0459183673469388e-5,TRUE
Converse,Male,65,74,0.024411,0.0025487244897959183,FALSE,-5e-6,7.908163265306122e-6,FALSE
Crook,Male,65,74,0.023588,0.00314591836734694,FALSE,-1e-5,1.0459183673469388e-5,TRUE
Uinta,Male,65,74,0.021993000000000002,0.00206530612244898,FALSE,-2.2000000000000003e-5,9.183673469387756e-6,FALSE
Campbell,Male,65,74,0.020179000000000002,0.001477551020408163,FALSE,-2.7000000000000002e-5,7.142857142857143e-6,FALSE
Park,Male,65,74,0.020058,0.0013683673469387758,FALSE,4.0999999999999994e-5,5.025510204081632e-5,FALSE
Johnson,Male,65,74,0.01995,0.0024625,FALSE,-1e-5,1.0459183673469388e-5,TRUE
Weston,Male,65,74,0.018955,0.0028454081632653064,FALSE,-1e-5,1.0459183673469388e-5,TRUE
Niobrara,Male,65,74,0.018746,0.005038265306122449,FALSE,-1e-5,1.0459183673469388e-5,TRUE
Lincoln,Male,65,74,0.017908,0.0017096938775510205,FALSE,-1.5e-5,1.0459183673469388e-5,FALSE
Sublette,Male,65,74,0.016860999999999998,0.0023632653061224492,FALSE,-1e-5,1.0459183673469388e-5,TRUE
Albany,Male,65,74,0.016844,0.0015127551020408163,FALSE,-1.2e-5,6.632653061224491e-6,FALSE
Teton,Male,65,74,0.006832,0.0010502551020408165,FALSE,-1e-5,1.0459183673469388e-5,TRUE
Wyoming,Male,75,84,0.057741999999999995,9.255102040816332e-4,FALSE,-3.4e-5,1.2244897959183674e-5,FALSE
United States,Male,75,84,0.056594,3.9540816326530615e-5,FALSE,-2.2000000000000003e-5,6.3775510204081635e-6,FALSE
Hot Springs,Male,75,84,0.076458,0.009242602040816327,FALSE,-3.4e-5,1.2244897959183674e-5,TRUE
Big Horn,Male,75,84,0.072239,0.006390561224489798,FALSE,2e-6,6.632653061224491e-6,FALSE
Campbell,Male,75,84,0.069989,0.005278571428571428,FALSE,-9e-6,7.908163265306122e-6,FALSE
Niobrara,Male,75,84,0.06786600000000001,0.012880357142857143,FALSE,-3.4e-5,1.2244897959183674e-5,TRUE
Fremont,Male,75,84,0.065606,0.0035793367346938785,FALSE,0,5.86734693877551e-6,FALSE
Laramie,Male,75,84,0.064939,0.0024443877551020405,FALSE,1.8e-5,2.193877551020408e-5,FALSE
Sweetwater,Male,75,84,0.06423,0.004277551020408164,FALSE,-4e-6,5.86734693877551e-6,FALSE
Natrona,Male,75,84,0.06383899999999999,0.0029150510204081627,FALSE,-5e-6,5.357142857142857e-6,FALSE
Uinta,Male,75,84,0.06299300000000001,0.005786734693877551,FALSE,-2e-6,6.3775510204081635e-6,FALSE
Converse,Male,75,84,0.062525,0.006411734693877553,FALSE,2e-6,1.0459183673469388e-5,FALSE
Goshen,Male,75,84,0.062253,0.005486989795918366,FALSE,-2e-6,8.418367346938775e-6,FALSE
Washakie,Male,75,84,0.059549,0.006653061224489797,FALSE,-1.1000000000000001e-5,7.653061224489796e-6,FALSE
Platte,Male,75,84,0.058323999999999994,0.005893367346938775,FALSE,-9e-6,1.0714285714285714e-5,FALSE
Weston,Male,75,84,0.057823,0.008339795918367346,FALSE,-3.4e-5,1.2244897959183674e-5,TRUE
Crook,Male,75,84,0.050622,0.007015306122448979,FALSE,-3.4e-5,1.2244897959183674e-5,TRUE
Carbon,Male,75,84,0.050348000000000004,0.0053403061224489784,FALSE,-5e-6,7.653061224489796e-6,FALSE
Johnson,Male,75,84,0.050296,0.005653571428571428,FALSE,-1.3000000000000001e-5,9.438775510204082e-6,FALSE
Sheridan,Male,75,84,0.050053,0.003282653061224488,FALSE,-1.8e-5,5.612244897959184e-6,FALSE
Park,Male,75,84,0.049348,0.0030900510204081638,FALSE,-8e-6,7.908163265306122e-6,FALSE
Lincoln,Male,75,84,0.049228999999999995,0.004641581632653062,FALSE,-1.5e-5,7.397959183673469e-6,FALSE
Albany,Male,75,84,0.041287,0.0037395408163265298,FALSE,-1.4e-5,9.438775510204082e-6,FALSE
Sublette,Male,75,84,0.033843000000000005,0.004892857142857142,FALSE,-3.4e-5,1.2244897959183674e-5,TRUE
Teton,Male,75,84,0.02924,0.00356811224489796,FALSE,-3.4e-5,1.2244897959183674e-5,TRUE
Wyoming,Male,85,Inf,0.165538,0.0029581632653061236,FALSE,-3.5e-5,1.3775510204081634e-5,FALSE
United States,Male,85,Inf,0.16886900000000002,1.252551020408219e-4,FALSE,-1.7e-5,7.908163265306124e-6,FALSE
Crook,Male,85,Inf,0.20763,0.028573724489795917,FALSE,-3.5e-5,1.3775510204081634e-5,TRUE
Weston,Male,85,Inf,0.18973,0.024948979591836735,FALSE,-3.5e-5,1.3775510204081634e-5,TRUE
Natrona,Male,85,Inf,0.189003,0.00897168367346939,FALSE,1.6e-5,1.989795918367347e-5,FALSE
Converse,Male,85,Inf,0.18817799999999998,0.0204295918367347,FALSE,-3.5e-5,1.3775510204081634e-5,TRUE
Laramie,Male,85,Inf,0.186025,0.007594642857142854,FALSE,3.9e-5,2.8061224489795918e-5,FALSE
Sheridan,Male,85,Inf,0.183472,0.01222908163265306,FALSE,0,7.397959183673469e-6,FALSE
Albany,Male,85,Inf,0.18134099999999997,0.01609107142857143,FALSE,-2e-6,6.887755102040817e-6,FALSE
Campbell,Male,85,Inf,0.17480099999999998,0.016131122448979594,FALSE,-3.5e-5,1.3775510204081634e-5,TRUE
Platte,Male,85,Inf,0.174091,0.01871760204081633,FALSE,-3.5e-5,1.3775510204081634e-5,TRUE
Big Horn,Male,85,Inf,0.172964,0.019225510204081635,FALSE,-3.5e-5,1.3775510204081634e-5,TRUE
Sweetwater,Male,85,Inf,0.17237599999999997,0.014889540816326532,FALSE,-1.2e-5,6.122448979591837e-6,FALSE
Fremont,Male,85,Inf,0.16275,0.01096811224489796,FALSE,-9e-6,7.39795918367347e-6,FALSE
Hot Springs,Male,85,Inf,0.16177,0.023132397959183672,FALSE,-3.5e-5,1.3775510204081634e-5,TRUE
Lincoln,Male,85,Inf,0.15788,0.017563265306122452,FALSE,-1.54e-4,6.173469387755103e-5,FALSE
Carbon,Male,85,Inf,0.146163,0.017541071428571434,FALSE,-3.5e-5,1.3775510204081634e-5,TRUE
Park,Male,85,Inf,0.145312,0.010388520408163264,FALSE,-6e-6,5.86734693877551e-6,FALSE
Uinta,Male,85,Inf,0.142017,0.01692780612244898,FALSE,-1.2e-5,1.3520408163265305e-5,FALSE
Goshen,Male,85,Inf,0.135845,0.014260459183673474,FALSE,-7e-6,8.163265306122448e-6,FALSE
Washakie,Male,85,Inf,0.135288,0.018391581632653062,FALSE,-1.3000000000000001e-5,1.096938775510204e-5,FALSE
Sublette,Male,85,Inf,0.12662700000000002,0.019481632653061225,FALSE,-3.5e-5,1.3775510204081634e-5,TRUE
Niobrara,Male,85,Inf,0.115925,0.025661989795918362,FALSE,-3.5e-5,1.3775510204081634e-5,TRUE
Johnson,Male,85,Inf,0.10347,0.01366658163265306,FALSE,-3.5e-5,1.3775510204081634e-5,TRUE
Teton,Male,85,Inf,0.098478,0.012717857142857142,FALSE,-9.199999999999999e-5,6.147959183673469e-5,FALSE
1 County Sex Min_Age Max_Age Death_Rate Rate_SD Imparted_Rate Trend Trend_SD Imparted_Trend
2 Wyoming Female 0 0 0.005673999999999999 6.415816326530612e-4 FALSE 5e-6 6.122448979591837e-6 TRUE
3 United States Female 0 0 0.005039 2.3724489795918395e-5 FALSE 5e-6 6.122448979591837e-6 FALSE
4 Laramie Female 0 0 0.00635 0.0016502551020408163 FALSE 5e-6 6.122448979591837e-6 TRUE
5 Albany Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
6 Big Horn Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
7 Campbell Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
8 Carbon Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
9 Converse Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
10 Crook Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
11 Fremont Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
12 Goshen Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
13 Hot Springs Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
14 Johnson Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
15 Lincoln Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
16 Natrona Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
17 Niobrara Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
18 Park Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
19 Platte Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
20 Sheridan Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
21 Sublette Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
22 Sweetwater Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
23 Teton Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
24 Uinta Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
25 Washakie Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
26 Weston Female 0 0 0.005673999999999999 6.415816326530612e-4 TRUE 5e-6 6.122448979591837e-6 TRUE
27 Wyoming Female 1 9 1.79e-4 3.64795918367347e-5 FALSE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
28 United States Female 1 9 1.5800000000000002e-4 1.2755102040816327e-6 FALSE 3.7999999999999995e-5 9.693877551020408e-6 FALSE
29 Albany Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
30 Big Horn Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
31 Campbell Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
32 Carbon Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
33 Converse Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
34 Crook Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
35 Fremont Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
36 Goshen Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
37 Hot Springs Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
38 Johnson Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
39 Laramie Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
40 Lincoln Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
41 Natrona Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
42 Niobrara Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
43 Park Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
44 Platte Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
45 Sheridan Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
46 Sublette Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
47 Sweetwater Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
48 Teton Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
49 Uinta Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
50 Washakie Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
51 Weston Female 1 9 1.79e-4 3.64795918367347e-5 TRUE 3.7999999999999995e-5 9.693877551020408e-6 TRUE
52 Wyoming Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 FALSE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
53 United States Female 10 19 2.2600000000000002e-4 1.5306122448979538e-6 FALSE 2.2000000000000003e-5 4.846938775510204e-6 FALSE
54 Albany Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
55 Big Horn Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
56 Campbell Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
57 Carbon Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
58 Converse Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
59 Crook Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
60 Fremont Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
61 Goshen Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
62 Hot Springs Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
63 Johnson Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
64 Laramie Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
65 Lincoln Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
66 Natrona Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
67 Niobrara Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
68 Park Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
69 Platte Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
70 Sheridan Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
71 Sublette Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
72 Sweetwater Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
73 Teton Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
74 Uinta Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
75 Washakie Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
76 Weston Female 10 19 2.9800000000000003e-4 4.132653061224491e-5 TRUE 2.2000000000000003e-5 4.846938775510204e-6 TRUE
77 Wyoming Female 20 39 0.001086 5.5867346938775525e-5 FALSE 1e-5 4.3367346938775506e-6 FALSE
78 United States Female 20 39 9.96e-4 2.040816326530605e-6 FALSE 0 9.948979591836735e-6 FALSE
79 Fremont Female 20 39 0.003397 4.048469387755102e-4 FALSE 1e-5 4.3367346938775506e-6 TRUE
80 Sweetwater Female 20 39 0.001521 2.4821428571428575e-4 FALSE 1e-5 4.3367346938775506e-6 TRUE
81 Park Female 20 39 0.001124 2.834183673469388e-4 FALSE 1e-5 4.3367346938775506e-6 TRUE
82 Natrona Female 20 39 0.0011070000000000001 1.5127551020408165e-4 FALSE 1e-5 4.3367346938775506e-6 TRUE
83 Laramie Female 20 39 0.001044 1.3112244897959185e-4 FALSE 1e-5 4.3367346938775506e-6 TRUE
84 Campbell Female 20 39 8.79e-4 1.8290816326530613e-4 FALSE 1e-5 4.3367346938775506e-6 TRUE
85 Albany Female 20 39 0.001086 5.5867346938775525e-5 TRUE 1e-5 4.3367346938775506e-6 TRUE
86 Big Horn Female 20 39 0.001086 5.5867346938775525e-5 TRUE 1e-5 4.3367346938775506e-6 TRUE
87 Carbon Female 20 39 0.001086 5.5867346938775525e-5 TRUE 1e-5 4.3367346938775506e-6 TRUE
88 Converse Female 20 39 0.001086 5.5867346938775525e-5 TRUE 1e-5 4.3367346938775506e-6 TRUE
89 Crook Female 20 39 0.001086 5.5867346938775525e-5 TRUE 1e-5 4.3367346938775506e-6 TRUE
90 Goshen Female 20 39 0.001086 5.5867346938775525e-5 TRUE 1e-5 4.3367346938775506e-6 TRUE
91 Hot Springs Female 20 39 0.001086 5.5867346938775525e-5 TRUE 1e-5 4.3367346938775506e-6 TRUE
92 Johnson Female 20 39 0.001086 5.5867346938775525e-5 TRUE 1e-5 4.3367346938775506e-6 TRUE
93 Lincoln Female 20 39 0.001086 5.5867346938775525e-5 TRUE 1e-5 4.3367346938775506e-6 TRUE
94 Niobrara Female 20 39 0.001086 5.5867346938775525e-5 TRUE 1e-5 4.3367346938775506e-6 TRUE
95 Platte Female 20 39 0.001086 5.5867346938775525e-5 TRUE 1e-5 4.3367346938775506e-6 TRUE
96 Sheridan Female 20 39 0.001086 5.5867346938775525e-5 TRUE 1e-5 4.3367346938775506e-6 TRUE
97 Sublette Female 20 39 0.001086 5.5867346938775525e-5 TRUE 1e-5 4.3367346938775506e-6 TRUE
98 Teton Female 20 39 0.001086 5.5867346938775525e-5 TRUE 1e-5 4.3367346938775506e-6 TRUE
99 Uinta Female 20 39 0.001086 5.5867346938775525e-5 TRUE 1e-5 4.3367346938775506e-6 TRUE
100 Washakie Female 20 39 0.001086 5.5867346938775525e-5 TRUE 1e-5 4.3367346938775506e-6 TRUE
101 Weston Female 20 39 0.001086 5.5867346938775525e-5 TRUE 1e-5 4.3367346938775506e-6 TRUE
102 Wyoming Female 40 64 0.004525 1.0025510204081622e-4 FALSE -3e-6 1.1224489795918369e-5 FALSE
103 United States Female 40 64 0.0040869999999999995 3.826530612244898e-6 FALSE -8e-6 7.653061224489796e-6 FALSE
104 Fremont Female 40 64 0.007469 5.158163265306123e-4 FALSE 2.5e-5 7.653061224489796e-6 FALSE
105 Uinta Female 40 64 0.006474 6.68877551020408e-4 FALSE 6.3e-5 4.2602040816326545e-5 FALSE
106 Hot Springs Female 40 64 0.006397000000000001 0.001375 FALSE -3e-6 1.1224489795918369e-5 TRUE
107 Sweetwater Female 40 64 0.005991 4.3214285714285707e-4 FALSE 5.1e-5 3.188775510204082e-5 FALSE
108 Carbon Female 40 64 0.00577 7.267857142857144e-4 FALSE -3e-6 1.1224489795918369e-5 TRUE
109 Goshen Female 40 64 0.005709 8.801020408163265e-4 FALSE -3e-6 1.1224489795918369e-5 TRUE
110 Natrona Female 40 64 0.0049960000000000004 2.816326530612246e-4 FALSE 1.1000000000000001e-5 1.9387755102040817e-5 FALSE
111 Converse Female 40 64 0.004393 6.57908163265306e-4 FALSE -3e-6 1.1224489795918369e-5 TRUE
112 Platte Female 40 64 0.004347 8.665816326530613e-4 FALSE -3e-6 1.1224489795918369e-5 TRUE
113 Washakie Female 40 64 0.00421 8.451530612244897e-4 FALSE -3e-6 1.1224489795918369e-5 TRUE
114 Laramie Female 40 64 0.004162 2.3010204081632652e-4 FALSE -1e-6 4.846938775510204e-6 FALSE
115 Park Female 40 64 0.004129 4.392857142857142e-4 FALSE 1e-5 1.5051020408163266e-5 FALSE
116 Campbell Female 40 64 0.004102 3.423469387755102e-4 FALSE -3e-6 7.908163265306124e-6 FALSE
117 Sheridan Female 40 64 0.003923 3.895408163265306e-4 FALSE 1.1000000000000001e-5 1.0204081632653061e-5 FALSE
118 Big Horn Female 40 64 0.0037739999999999996 6.591836734693878e-4 FALSE -3e-6 1.1224489795918369e-5 TRUE
119 Crook Female 40 64 0.003632 9.025510204081632e-4 FALSE -3e-6 1.1224489795918369e-5 TRUE
120 Albany Female 40 64 0.0035910000000000004 4.1428571428571426e-4 FALSE 0 7.397959183673469e-6 FALSE
121 Johnson Female 40 64 0.003374 7.191326530612244e-4 FALSE -3e-6 1.1224489795918369e-5 TRUE
122 Lincoln Female 40 64 0.0033410000000000002 4.6096938775510205e-4 FALSE 9e-6 9.948979591836735e-6 FALSE
123 Sublette Female 40 64 0.002813 6.80612244897959e-4 FALSE -3e-6 1.1224489795918369e-5 TRUE
124 Teton Female 40 64 0.001251 2.670918367346939e-4 FALSE -3e-6 1.1224489795918369e-5 TRUE
125 Niobrara Female 40 64 0.004525 1.0025510204081622e-4 TRUE -3e-6 1.1224489795918369e-5 TRUE
126 Weston Female 40 64 0.004525 1.0025510204081622e-4 TRUE -3e-6 1.1224489795918369e-5 TRUE
127 Wyoming Female 65 74 0.016364 3.255102040816324e-4 FALSE -1.7e-5 1.6326530612244897e-5 FALSE
128 United States Female 65 74 0.015801 1.352040816326519e-5 FALSE -1.1000000000000001e-5 6.632653061224491e-6 FALSE
129 Big Horn Female 65 74 0.022495 0.0026020408163265306 FALSE 1.5e-5 1.2755102040816327e-5 FALSE
130 Fremont Female 65 74 0.019869 0.0013096938775510208 FALSE -3e-6 7.653061224489796e-6 FALSE
131 Natrona Female 65 74 0.019782 0.001003571428571428 FALSE 0 5.102040816326531e-6 FALSE
132 Laramie Female 65 74 0.019148 8.607142857142859e-4 FALSE 7.2e-5 3.112244897959183e-5 FALSE
133 Sweetwater Female 65 74 0.018866 0.0014732142857142858 FALSE -9e-6 6.3775510204081635e-6 FALSE
134 Campbell Female 65 74 0.017571 0.0014079081632653063 FALSE -1.2e-5 8.418367346938776e-6 FALSE
135 Hot Springs Female 65 74 0.017042 0.003117091836734694 FALSE -1.7e-5 1.6326530612244897e-5 TRUE
136 Carbon Female 65 74 0.016312 0.0021163265306122447 FALSE -1.7e-5 1.6326530612244897e-5 TRUE
137 Weston Female 65 74 0.016185 0.002942091836734694 FALSE -1.7e-5 1.6326530612244897e-5 TRUE
138 Converse Female 65 74 0.016108 0.0022005102040816332 FALSE -1.7e-5 1.6326530612244897e-5 TRUE
139 Goshen Female 65 74 0.015045 0.0020487244897959183 FALSE -1.7e-5 1.6326530612244897e-5 TRUE
140 Uinta Female 65 74 0.014986 0.0017719387755102038 FALSE -1.7e-5 1.6326530612244897e-5 TRUE
141 Washakie Female 65 74 0.014965 0.0025765306122448976 FALSE -1.7e-5 1.6326530612244897e-5 TRUE
142 Crook Female 65 74 0.014662 0.0025719387755102035 FALSE -1.7e-5 1.6326530612244897e-5 TRUE
143 Platte Female 65 74 0.014537000000000001 0.0022316326530612243 FALSE -1.7e-5 1.6326530612244897e-5 TRUE
144 Park Female 65 74 0.014377000000000001 0.0011780612244897959 FALSE -7e-6 5.612244897959184e-6 FALSE
145 Albany Female 65 74 0.01376 0.0013933673469387756 FALSE -2.2000000000000003e-5 1.2499999999999997e-5 FALSE
146 Sheridan Female 65 74 0.013214 0.0011525510204081631 FALSE -1.3000000000000001e-5 8.673469387755101e-6 FALSE
147 Johnson Female 65 74 0.011374 0.0019609693877551022 FALSE -1.7e-5 1.6326530612244897e-5 TRUE
148 Sublette Female 65 74 0.010197999999999999 0.0020364795918367345 FALSE -1.7e-5 1.6326530612244897e-5 TRUE
149 Lincoln Female 65 74 0.009472999999999999 0.0012964285714285714 FALSE -1.7e-5 1.6326530612244897e-5 TRUE
150 Teton Female 65 74 0.0054589999999999994 0.0010316326530612244 FALSE -1.7e-5 1.6326530612244897e-5 TRUE
151 Niobrara Female 65 74 0.016364 3.255102040816324e-4 TRUE -1.7e-5 1.6326530612244897e-5 TRUE
152 Wyoming Female 75 84 0.04426 7.709183673469382e-4 FALSE 1.5e-5 1.1989795918367348e-5 FALSE
153 United States Female 75 84 0.041162 2.984693877551206e-5 FALSE -1.7e-5 6.122448979591838e-6 FALSE
154 Weston Female 75 84 0.064473 0.008212244897959181 FALSE 1.5e-5 1.1989795918367348e-5 TRUE
155 Hot Springs Female 75 84 0.058228 0.007786479591836735 FALSE 1.2e-5 1.1479591836734695e-5 FALSE
156 Big Horn Female 75 84 0.05412 0.005449489795918368 FALSE 1.5e-5 1.1989795918367348e-5 TRUE
157 Fremont Female 75 84 0.052425 0.0030892857142857146 FALSE 4e-6 6.3775510204081635e-6 FALSE
158 Natrona Female 75 84 0.049432 0.0023053571428571424 FALSE 2e-6 3.826530612244898e-6 FALSE
159 Campbell Female 75 84 0.049208 0.003808163265306123 FALSE -5e-6 6.887755102040817e-6 FALSE
160 Laramie Female 75 84 0.048791 0.0019788265306122446 FALSE 2e-6 4.336734693877551e-6 FALSE
161 Sweetwater Female 75 84 0.047755 0.0035678571428571417 FALSE -2e-6 6.3775510204081635e-6 FALSE
162 Converse Female 75 84 0.046121999999999996 0.005119387755102041 FALSE 9e-6 8.92857142857143e-6 FALSE
163 Goshen Female 75 84 0.044093999999999994 0.004294387755102041 FALSE -2e-6 7.908163265306122e-6 FALSE
164 Niobrara Female 75 84 0.04366 0.010155612244897957 FALSE 1.5e-5 1.1989795918367348e-5 TRUE
165 Lincoln Female 75 84 0.043425 0.004336734693877551 FALSE -2e-6 8.418367346938775e-6 FALSE
166 Platte Female 75 84 0.04324600000000001 0.004982908163265305 FALSE 5e-6 7.142857142857143e-6 FALSE
167 Carbon Female 75 84 0.042355 0.00491173469387755 FALSE 1.5e-5 1.1989795918367348e-5 TRUE
168 Albany Female 75 84 0.040271 0.0034446428571428566 FALSE -3e-6 8.418367346938775e-6 FALSE
169 Washakie Female 75 84 0.039571999999999996 0.005434948979591836 FALSE 1.5e-5 1.1989795918367348e-5 TRUE
170 Sheridan Female 75 84 0.038169 0.0027647959183673466 FALSE -1.4e-5 6.122448979591837e-6 FALSE
171 Uinta Female 75 84 0.037538 0.004328571428571428 FALSE 1.5e-5 1.1989795918367348e-5 TRUE
172 Park Female 75 84 0.034838 0.0025653061224489796 FALSE -1.3000000000000001e-5 6.3775510204081635e-6 FALSE
173 Johnson Female 75 84 0.033609 0.0047066326530612245 FALSE 1.5e-5 1.1989795918367348e-5 TRUE
174 Crook Female 75 84 0.032882 0.005749234693877551 FALSE 1.5e-5 1.1989795918367348e-5 TRUE
175 Sublette Female 75 84 0.03058 0.004828826530612244 FALSE 1.5e-5 1.1989795918367348e-5 TRUE
176 Teton Female 75 84 0.021231999999999997 0.002872959183673469 FALSE 1.5e-5 1.1989795918367348e-5 TRUE
177 Wyoming Female 85 Inf 0.14438700000000002 0.0021448979591836763 FALSE 9e-6 1.1479591836734695e-5 FALSE
178 United States Female 85 Inf 0.139983 8.39285714285705e-5 FALSE -1.1000000000000001e-5 9.438775510204082e-6 FALSE
179 Hot Springs Female 85 Inf 0.18055900000000003 0.01969591836734694 FALSE 2e-5 1.1989795918367348e-5 FALSE
180 Crook Female 85 Inf 0.165957 0.020828061224489797 FALSE 9e-6 1.1479591836734695e-5 TRUE
181 Albany Female 85 Inf 0.16516099999999997 0.011379336734693879 FALSE 1.8999999999999998e-5 2.3979591836734696e-5 FALSE
182 Campbell Female 85 Inf 0.161304 0.011592091836734689 FALSE -3e-6 6.887755102040817e-6 FALSE
183 Natrona Female 85 Inf 0.156174 0.0059295918367346925 FALSE 1.4e-5 7.142857142857143e-6 FALSE
184 Washakie Female 85 Inf 0.15390600000000002 0.015426020408163266 FALSE 0 8.418367346938775e-6 FALSE
185 Johnson Female 85 Inf 0.152618 0.015923979591836737 FALSE 1.2e-5 7.908163265306122e-6 FALSE
186 Sweetwater Female 85 Inf 0.149978 0.009936734693877554 FALSE -5e-6 7.397959183673469e-6 FALSE
187 Sheridan Female 85 Inf 0.14934799999999998 0.008692091836734691 FALSE -8e-6 4.081632653061224e-6 FALSE
188 Goshen Female 85 Inf 0.148905 0.011026530612244897 FALSE 1.1e-4 5.637755102040817e-5 FALSE
189 Laramie Female 85 Inf 0.145436 0.005139795918367349 FALSE 5.3e-5 2.7295918367346937e-5 FALSE
190 Lincoln Female 85 Inf 0.145245 0.013969642857142858 FALSE -6e-6 6.3775510204081635e-6 FALSE
191 Big Horn Female 85 Inf 0.143643 0.012999744897959188 FALSE -1.3000000000000001e-5 6.3775510204081635e-6 FALSE
192 Converse Female 85 Inf 0.140676 0.014763010204081628 FALSE -6e-6 1.1989795918367346e-5 FALSE
193 Carbon Female 85 Inf 0.138829 0.014641071428571427 FALSE -1.7e-5 9.183673469387756e-6 FALSE
194 Fremont Female 85 Inf 0.135523 0.007590051020408162 FALSE -5e-6 4.591836734693877e-6 FALSE
195 Park Female 85 Inf 0.135181 0.007483418367346939 FALSE 2e-6 6.122448979591837e-6 FALSE
196 Weston Female 85 Inf 0.126442 0.015349744897959185 FALSE 9e-6 1.1479591836734695e-5 TRUE
197 Platte Female 85 Inf 0.119165 0.012705357142857142 FALSE -1.2e-5 1.1989795918367348e-5 FALSE
198 Niobrara Female 85 Inf 0.11524 0.026242091836734698 FALSE 9e-6 1.1479591836734695e-5 TRUE
199 Teton Female 85 Inf 0.11490299999999999 0.01195433673469388 FALSE 9e-6 1.1479591836734695e-5 TRUE
200 Uinta Female 85 Inf 0.111856 0.011629846938775513 FALSE -2.7000000000000002e-5 8.92857142857143e-6 FALSE
201 Sublette Female 85 Inf 0.091725 0.015146428571428571 FALSE 9e-6 1.1479591836734695e-5 TRUE
202 Wyoming Male 0 0 0.005242 5.926020408163265e-4 FALSE -1e-5 2.040816326530612e-6 TRUE
203 United States Male 0 0 0.005962 2.5255102040816556e-5 FALSE -1e-5 2.040816326530612e-6 FALSE
204 Natrona Male 0 0 0.0075320000000000005 0.0019571428571428574 FALSE -1e-5 2.040816326530612e-6 TRUE
205 Laramie Male 0 0 0.005385 0.0014459183673469385 FALSE -1e-5 2.040816326530612e-6 TRUE
206 Albany Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
207 Big Horn Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
208 Campbell Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
209 Carbon Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
210 Converse Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
211 Crook Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
212 Fremont Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
213 Goshen Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
214 Hot Springs Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
215 Johnson Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
216 Lincoln Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
217 Niobrara Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
218 Park Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
219 Platte Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
220 Sheridan Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
221 Sublette Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
222 Sweetwater Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
223 Teton Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
224 Uinta Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
225 Washakie Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
226 Weston Male 0 0 0.005242 5.926020408163265e-4 TRUE -1e-5 2.040816326530612e-6 TRUE
227 Wyoming Male 1 9 2.07e-4 3.775510204081633e-5 FALSE 4e-5 8.673469387755103e-6 TRUE
228 United States Male 1 9 1.94e-4 1.2755102040816327e-6 FALSE 4e-5 8.673469387755103e-6 FALSE
229 Albany Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
230 Big Horn Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
231 Campbell Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
232 Carbon Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
233 Converse Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
234 Crook Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
235 Fremont Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
236 Goshen Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
237 Hot Springs Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
238 Johnson Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
239 Laramie Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
240 Lincoln Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
241 Natrona Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
242 Niobrara Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
243 Park Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
244 Platte Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
245 Sheridan Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
246 Sublette Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
247 Sweetwater Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
248 Teton Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
249 Uinta Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
250 Washakie Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
251 Weston Male 1 9 2.07e-4 3.775510204081633e-5 TRUE 4e-5 8.673469387755103e-6 TRUE
252 Wyoming Male 10 19 7.440000000000001e-4 6.224489795918366e-5 FALSE -1e-6 8.673469387755103e-6 FALSE
253 United States Male 10 19 4.94e-4 2.040816326530605e-6 FALSE 3.2e-5 5.867346938775511e-6 FALSE
254 Fremont Male 10 19 0.001368 3.25765306122449e-4 FALSE -1e-6 8.673469387755103e-6 TRUE
255 Laramie Male 10 19 7.559999999999999e-4 1.596938775510204e-4 FALSE -1e-6 8.673469387755103e-6 TRUE
256 Natrona Male 10 19 6.2e-4 1.6096938775510204e-4 FALSE -1e-6 8.673469387755103e-6 TRUE
257 Albany Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
258 Big Horn Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
259 Campbell Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
260 Carbon Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
261 Converse Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
262 Crook Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
263 Goshen Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
264 Hot Springs Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
265 Johnson Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
266 Lincoln Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
267 Niobrara Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
268 Park Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
269 Platte Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
270 Sheridan Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
271 Sublette Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
272 Sweetwater Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
273 Teton Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
274 Uinta Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
275 Washakie Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
276 Weston Male 10 19 7.440000000000001e-4 6.224489795918366e-5 TRUE -1e-6 8.673469387755103e-6 TRUE
277 Wyoming Male 20 39 0.002489 8.086734693877556e-5 FALSE 5.6e-5 3.214285714285715e-5 FALSE
278 United States Male 20 39 0.002212 3.316326530612274e-6 FALSE 1.2e-5 1.1224489795918369e-5 FALSE
279 Fremont Male 20 39 0.005635 5.081632653061224e-4 FALSE 1.2e-5 9.183673469387756e-6 FALSE
280 Big Horn Male 20 39 0.003754 8.112244897959184e-4 FALSE 5.6e-5 3.214285714285715e-5 TRUE
281 Uinta Male 20 39 0.003661 5.752551020408163e-4 FALSE 5.6e-5 3.214285714285715e-5 TRUE
282 Sweetwater Male 20 39 0.002951 3.3010204081632664e-4 FALSE 5.6e-5 3.214285714285715e-5 TRUE
283 Lincoln Male 20 39 0.00293 5.543367346938776e-4 FALSE 5.6e-5 3.214285714285715e-5 TRUE
284 Converse Male 20 39 0.002522 5.869897959183673e-4 FALSE 5.6e-5 3.214285714285715e-5 TRUE
285 Natrona Male 20 39 0.002503 2.2015306122448976e-4 FALSE 4e-6 7.908163265306124e-6 FALSE
286 Campbell Male 20 39 0.002484 2.795918367346939e-4 FALSE 5.6e-5 3.214285714285715e-5 TRUE
287 Laramie Male 20 39 0.002457 1.8775510204081632e-4 FALSE 2.1000000000000002e-5 8.92857142857143e-6 FALSE
288 Carbon Male 20 39 0.002385 5.056122448979592e-4 FALSE 5.6e-5 3.214285714285715e-5 TRUE
289 Sheridan Male 20 39 0.001987 3.4693877551020415e-4 FALSE 5.6e-5 3.214285714285715e-5 TRUE
290 Park Male 20 39 0.001602 3.3214285714285724e-4 FALSE 5.6e-5 3.214285714285715e-5 TRUE
291 Teton Male 20 39 0.001359 3.025510204081633e-4 FALSE 5.6e-5 3.214285714285715e-5 TRUE
292 Albany Male 20 39 0.0013169999999999998 2.3724489795918374e-4 FALSE 5.6e-5 3.214285714285715e-5 TRUE
293 Crook Male 20 39 0.002489 8.086734693877556e-5 TRUE 5.6e-5 3.214285714285715e-5 TRUE
294 Goshen Male 20 39 0.002489 8.086734693877556e-5 TRUE 5.6e-5 3.214285714285715e-5 TRUE
295 Hot Springs Male 20 39 0.002489 8.086734693877556e-5 TRUE 5.6e-5 3.214285714285715e-5 TRUE
296 Johnson Male 20 39 0.002489 8.086734693877556e-5 TRUE 5.6e-5 3.214285714285715e-5 TRUE
297 Niobrara Male 20 39 0.002489 8.086734693877556e-5 TRUE 5.6e-5 3.214285714285715e-5 TRUE
298 Platte Male 20 39 0.002489 8.086734693877556e-5 TRUE 5.6e-5 3.214285714285715e-5 TRUE
299 Sublette Male 20 39 0.002489 8.086734693877556e-5 TRUE 5.6e-5 3.214285714285715e-5 TRUE
300 Washakie Male 20 39 0.002489 8.086734693877556e-5 TRUE 5.6e-5 3.214285714285715e-5 TRUE
301 Weston Male 20 39 0.002489 8.086734693877556e-5 TRUE 5.6e-5 3.214285714285715e-5 TRUE
302 Wyoming Male 40 64 0.006889 1.2066326530612233e-4 FALSE -2.1000000000000002e-5 1.3520408163265308e-5 FALSE
303 United States Male 40 64 0.006857 4.846938775510436e-6 FALSE -2e-6 7.397959183673469e-6 FALSE
304 Fremont Male 40 64 0.010539000000000001 6.056122448979588e-4 FALSE 1.8e-5 8.673469387755101e-6 FALSE
305 Hot Springs Male 40 64 0.008534 0.0016448979591836734 FALSE -2.1000000000000002e-5 1.3520408163265308e-5 TRUE
306 Natrona Male 40 64 0.008146 3.558673469387755e-4 FALSE -1.2e-5 3.112244897959183e-5 FALSE
307 Uinta Male 40 64 0.0077020000000000005 6.903061224489797e-4 FALSE 1.3000000000000001e-5 7.142857142857143e-6 FALSE
308 Carbon Male 40 64 0.0075639999999999995 7.90561224489796e-4 FALSE 1.4e-5 8.418367346938775e-6 FALSE
309 Goshen Male 40 64 0.007551 8.545918367346938e-4 FALSE -2.1000000000000002e-5 1.3520408163265308e-5 TRUE
310 Sweetwater Male 40 64 0.007405 4.6096938775510215e-4 FALSE 5.7e-5 2.9336734693877552e-5 FALSE
311 Laramie Male 40 64 0.007075 2.9642857142857156e-4 FALSE 3e-6 4.591836734693877e-6 FALSE
312 Big Horn Male 40 64 0.006978 9.219387755102041e-4 FALSE -2.1000000000000002e-5 1.3520408163265308e-5 TRUE
313 Platte Male 40 64 0.006887000000000001 0.0010561224489795918 FALSE -2.1000000000000002e-5 1.3520408163265308e-5 TRUE
314 Crook Male 40 64 0.00663 0.0011035714285714284 FALSE -2.1000000000000002e-5 1.3520408163265308e-5 TRUE
315 Albany Male 40 64 0.006542 5.428571428571431e-4 FALSE 5e-5 4.0816326530612245e-5 FALSE
316 Campbell Male 40 64 0.006417999999999999 4.14795918367347e-4 FALSE 7.599999999999999e-5 4.7448979591836735e-5 FALSE
317 Park Male 40 64 0.006296 5.252551020408163e-4 FALSE 1.7e-5 9.438775510204082e-6 FALSE
318 Washakie Male 40 64 0.006225 9.89795918367347e-4 FALSE -2.1000000000000002e-5 1.3520408163265308e-5 TRUE
319 Sheridan Male 40 64 0.0059039999999999995 4.8545918367346927e-4 FALSE -6e-6 5.102040816326531e-6 FALSE
320 Weston Male 40 64 0.005822999999999999 9.770408163265307e-4 FALSE -2.1000000000000002e-5 1.3520408163265308e-5 TRUE
321 Lincoln Male 40 64 0.005426 5.724489795918367e-4 FALSE 5e-6 8.163265306122448e-6 FALSE
322 Converse Male 40 64 0.005411 6.875e-4 FALSE 2.8e-5 2.6785714285714288e-5 FALSE
323 Sublette Male 40 64 0.005327999999999999 8.441326530612244e-4 FALSE -2.1000000000000002e-5 1.3520408163265308e-5 TRUE
324 Johnson Male 40 64 0.004399 7.793367346938775e-4 FALSE -2.1000000000000002e-5 1.3520408163265308e-5 TRUE
325 Teton Male 40 64 0.002084 3.191326530612244e-4 FALSE -2.1000000000000002e-5 1.3520408163265308e-5 TRUE
326 Niobrara Male 40 64 0.006889 1.2066326530612233e-4 TRUE -2.1000000000000002e-5 1.3520408163265308e-5 TRUE
327 Wyoming Male 65 74 0.023544000000000002 3.8392857142857147e-4 FALSE -1e-5 1.0459183673469388e-5 FALSE
328 United States Male 65 74 0.024285 1.785714285714286e-5 FALSE -1.1000000000000001e-5 6.3775510204081635e-6 FALSE
329 Hot Springs Male 65 74 0.038213000000000004 0.004755357142857143 FALSE 6.8e-5 8.64795918367347e-5 FALSE
330 Carbon Male 65 74 0.029925999999999998 0.0026982142857142856 FALSE -4e-6 7.908163265306124e-6 FALSE
331 Goshen Male 65 74 0.027766 0.00267295918367347 FALSE 1.2e-5 7.908163265306124e-6 FALSE
332 Platte Male 65 74 0.027726999999999998 0.00297295918367347 FALSE 4.4000000000000006e-5 4.1581632653061226e-5 FALSE
333 Natrona Male 65 74 0.027261 0.0011729591836734687 FALSE 5.6e-5 3.2908163265306125e-5 FALSE
334 Sweetwater Male 65 74 0.02687 0.0016755102040816319 FALSE 2e-6 7.397959183673469e-6 FALSE
335 Fremont Male 65 74 0.026595 0.0015433673469387756 FALSE -6e-6 6.887755102040817e-6 FALSE
336 Laramie Male 65 74 0.02637 0.0010372448979591835 FALSE -1e-6 1.9387755102040817e-5 FALSE
337 Big Horn Male 65 74 0.025905 0.0027229591836734697 FALSE -1e-5 8.418367346938775e-6 FALSE
338 Sheridan Male 65 74 0.025036 0.0015446428571428573 FALSE 3e-6 5.102040816326531e-6 FALSE
339 Washakie Male 65 74 0.025003 0.003276020408163265 FALSE -1e-5 1.0459183673469388e-5 TRUE
340 Converse Male 65 74 0.024411 0.0025487244897959183 FALSE -5e-6 7.908163265306122e-6 FALSE
341 Crook Male 65 74 0.023588 0.00314591836734694 FALSE -1e-5 1.0459183673469388e-5 TRUE
342 Uinta Male 65 74 0.021993000000000002 0.00206530612244898 FALSE -2.2000000000000003e-5 9.183673469387756e-6 FALSE
343 Campbell Male 65 74 0.020179000000000002 0.001477551020408163 FALSE -2.7000000000000002e-5 7.142857142857143e-6 FALSE
344 Park Male 65 74 0.020058 0.0013683673469387758 FALSE 4.0999999999999994e-5 5.025510204081632e-5 FALSE
345 Johnson Male 65 74 0.01995 0.0024625 FALSE -1e-5 1.0459183673469388e-5 TRUE
346 Weston Male 65 74 0.018955 0.0028454081632653064 FALSE -1e-5 1.0459183673469388e-5 TRUE
347 Niobrara Male 65 74 0.018746 0.005038265306122449 FALSE -1e-5 1.0459183673469388e-5 TRUE
348 Lincoln Male 65 74 0.017908 0.0017096938775510205 FALSE -1.5e-5 1.0459183673469388e-5 FALSE
349 Sublette Male 65 74 0.016860999999999998 0.0023632653061224492 FALSE -1e-5 1.0459183673469388e-5 TRUE
350 Albany Male 65 74 0.016844 0.0015127551020408163 FALSE -1.2e-5 6.632653061224491e-6 FALSE
351 Teton Male 65 74 0.006832 0.0010502551020408165 FALSE -1e-5 1.0459183673469388e-5 TRUE
352 Wyoming Male 75 84 0.057741999999999995 9.255102040816332e-4 FALSE -3.4e-5 1.2244897959183674e-5 FALSE
353 United States Male 75 84 0.056594 3.9540816326530615e-5 FALSE -2.2000000000000003e-5 6.3775510204081635e-6 FALSE
354 Hot Springs Male 75 84 0.076458 0.009242602040816327 FALSE -3.4e-5 1.2244897959183674e-5 TRUE
355 Big Horn Male 75 84 0.072239 0.006390561224489798 FALSE 2e-6 6.632653061224491e-6 FALSE
356 Campbell Male 75 84 0.069989 0.005278571428571428 FALSE -9e-6 7.908163265306122e-6 FALSE
357 Niobrara Male 75 84 0.06786600000000001 0.012880357142857143 FALSE -3.4e-5 1.2244897959183674e-5 TRUE
358 Fremont Male 75 84 0.065606 0.0035793367346938785 FALSE 0 5.86734693877551e-6 FALSE
359 Laramie Male 75 84 0.064939 0.0024443877551020405 FALSE 1.8e-5 2.193877551020408e-5 FALSE
360 Sweetwater Male 75 84 0.06423 0.004277551020408164 FALSE -4e-6 5.86734693877551e-6 FALSE
361 Natrona Male 75 84 0.06383899999999999 0.0029150510204081627 FALSE -5e-6 5.357142857142857e-6 FALSE
362 Uinta Male 75 84 0.06299300000000001 0.005786734693877551 FALSE -2e-6 6.3775510204081635e-6 FALSE
363 Converse Male 75 84 0.062525 0.006411734693877553 FALSE 2e-6 1.0459183673469388e-5 FALSE
364 Goshen Male 75 84 0.062253 0.005486989795918366 FALSE -2e-6 8.418367346938775e-6 FALSE
365 Washakie Male 75 84 0.059549 0.006653061224489797 FALSE -1.1000000000000001e-5 7.653061224489796e-6 FALSE
366 Platte Male 75 84 0.058323999999999994 0.005893367346938775 FALSE -9e-6 1.0714285714285714e-5 FALSE
367 Weston Male 75 84 0.057823 0.008339795918367346 FALSE -3.4e-5 1.2244897959183674e-5 TRUE
368 Crook Male 75 84 0.050622 0.007015306122448979 FALSE -3.4e-5 1.2244897959183674e-5 TRUE
369 Carbon Male 75 84 0.050348000000000004 0.0053403061224489784 FALSE -5e-6 7.653061224489796e-6 FALSE
370 Johnson Male 75 84 0.050296 0.005653571428571428 FALSE -1.3000000000000001e-5 9.438775510204082e-6 FALSE
371 Sheridan Male 75 84 0.050053 0.003282653061224488 FALSE -1.8e-5 5.612244897959184e-6 FALSE
372 Park Male 75 84 0.049348 0.0030900510204081638 FALSE -8e-6 7.908163265306122e-6 FALSE
373 Lincoln Male 75 84 0.049228999999999995 0.004641581632653062 FALSE -1.5e-5 7.397959183673469e-6 FALSE
374 Albany Male 75 84 0.041287 0.0037395408163265298 FALSE -1.4e-5 9.438775510204082e-6 FALSE
375 Sublette Male 75 84 0.033843000000000005 0.004892857142857142 FALSE -3.4e-5 1.2244897959183674e-5 TRUE
376 Teton Male 75 84 0.02924 0.00356811224489796 FALSE -3.4e-5 1.2244897959183674e-5 TRUE
377 Wyoming Male 85 Inf 0.165538 0.0029581632653061236 FALSE -3.5e-5 1.3775510204081634e-5 FALSE
378 United States Male 85 Inf 0.16886900000000002 1.252551020408219e-4 FALSE -1.7e-5 7.908163265306124e-6 FALSE
379 Crook Male 85 Inf 0.20763 0.028573724489795917 FALSE -3.5e-5 1.3775510204081634e-5 TRUE
380 Weston Male 85 Inf 0.18973 0.024948979591836735 FALSE -3.5e-5 1.3775510204081634e-5 TRUE
381 Natrona Male 85 Inf 0.189003 0.00897168367346939 FALSE 1.6e-5 1.989795918367347e-5 FALSE
382 Converse Male 85 Inf 0.18817799999999998 0.0204295918367347 FALSE -3.5e-5 1.3775510204081634e-5 TRUE
383 Laramie Male 85 Inf 0.186025 0.007594642857142854 FALSE 3.9e-5 2.8061224489795918e-5 FALSE
384 Sheridan Male 85 Inf 0.183472 0.01222908163265306 FALSE 0 7.397959183673469e-6 FALSE
385 Albany Male 85 Inf 0.18134099999999997 0.01609107142857143 FALSE -2e-6 6.887755102040817e-6 FALSE
386 Campbell Male 85 Inf 0.17480099999999998 0.016131122448979594 FALSE -3.5e-5 1.3775510204081634e-5 TRUE
387 Platte Male 85 Inf 0.174091 0.01871760204081633 FALSE -3.5e-5 1.3775510204081634e-5 TRUE
388 Big Horn Male 85 Inf 0.172964 0.019225510204081635 FALSE -3.5e-5 1.3775510204081634e-5 TRUE
389 Sweetwater Male 85 Inf 0.17237599999999997 0.014889540816326532 FALSE -1.2e-5 6.122448979591837e-6 FALSE
390 Fremont Male 85 Inf 0.16275 0.01096811224489796 FALSE -9e-6 7.39795918367347e-6 FALSE
391 Hot Springs Male 85 Inf 0.16177 0.023132397959183672 FALSE -3.5e-5 1.3775510204081634e-5 TRUE
392 Lincoln Male 85 Inf 0.15788 0.017563265306122452 FALSE -1.54e-4 6.173469387755103e-5 FALSE
393 Carbon Male 85 Inf 0.146163 0.017541071428571434 FALSE -3.5e-5 1.3775510204081634e-5 TRUE
394 Park Male 85 Inf 0.145312 0.010388520408163264 FALSE -6e-6 5.86734693877551e-6 FALSE
395 Uinta Male 85 Inf 0.142017 0.01692780612244898 FALSE -1.2e-5 1.3520408163265305e-5 FALSE
396 Goshen Male 85 Inf 0.135845 0.014260459183673474 FALSE -7e-6 8.163265306122448e-6 FALSE
397 Washakie Male 85 Inf 0.135288 0.018391581632653062 FALSE -1.3000000000000001e-5 1.096938775510204e-5 FALSE
398 Sublette Male 85 Inf 0.12662700000000002 0.019481632653061225 FALSE -3.5e-5 1.3775510204081634e-5 TRUE
399 Niobrara Male 85 Inf 0.115925 0.025661989795918362 FALSE -3.5e-5 1.3775510204081634e-5 TRUE
400 Johnson Male 85 Inf 0.10347 0.01366658163265306 FALSE -3.5e-5 1.3775510204081634e-5 TRUE
401 Teton Male 85 Inf 0.098478 0.012717857142857142 FALSE -9.199999999999999e-5 6.147959183673469e-5 FALSE

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

Can't render this file because it has a wrong number of fields in line 2.

View File

@ -7,4 +7,4 @@ Each file is single age group, so age weighting does not apply despite the varia
These files must be manually downloaded because there is a filter feature on the web page that is used to select the county and age. While there may be a way to scrape the data with code the trade off on my time was not worth it. Future runs will need to check these records, and can download the files to match this directory structure, in order to process a update in death rates.
Valid data as of Nov 6 2025 Alex Gebben
Valid data as of Nov 6 2025 Alex Gebben

View File

@ -82,18 +82,17 @@ LIN_MORTALITY <- MORTALITY_DATA_ALL %>% filter(County=="Lincoln")
write_csv(LIN_MORTALITY,paste0(CSV_SAVE,"/Lincoln_County_Mortality_Rates.csv" ))
#Create a short readme files to make the data sources more clear
#Save a raw data readme
sink(file=paste0(SAVE_LOC_RAW,"/README_MORTALITY_DATA.txt"),append=FALSE)
cat("Data files gathered manually from:\n")
cat("https://hdpulse.nimhd.nih.gov/data-portal/mortality/table?cod=247&cod_options=cod_15&ratetype=aa&ratetype_options=ratetype_2&race=00&race_options=race_6&sex=2&sex_options=sex_3&age=177&age_options=age_11&ruralurban=0&ruralurban_options=ruralurban_3&yeargroup=5&yeargroup_options=year5yearmort_1&statefips=56&statefips_options=area_states&county=56000&county_options=counties_wyoming&comparison=counties_to_us&comparison_options=comparison_counties&radio_comparison=areas&radio_comparison_options=cods_or_areas\n")
cat("\nEach file is single age group, so age weighting does not apply despite the variable names\n")
sink(file=paste0(SAVE_LOC_RAW_MORT ,"/README_MORTALITY_DATA.txt"),append=FALSE)
cat("Data files gathered manually from:
National Institute of Health HDPules: An Ecosystem of Health Disparities and Minority Health Resources at
https://hdpulse.nimhd.nih.gov/data-portal/mortality/table?cod=247&cod_options=cod_15&ratetype=aa&ratetype_options=ratetype_2&race=00&race_options=race_6&sex=2&sex_options=sex_3&age=177&age_options=age_11&ruralurban=0&ruralurban_options=ruralurban_3&yeargroup=5&yeargroup_options=year5yearmort_1&statefips=56&statefips_options=area_states&county=56000&county_options=counties_wyoming&comparison=counties_to_us&comparison_options=comparison_counties&radio_comparison=areas&radio_comparison_options=cods_or_areas
Each file is single age group, so age weighting does not apply despite the variable names. Each age group file is named sequentially with a prefixA_for the first age group and a prefixI_for the oldest. There are separate directories for each sex. The cleaning script uses this directory structure to extract the right files and merge them into one data set.
These files must be manually downloaded because there is a filter feature on the web page that is used to select the county and age. While there may be a way to scrape the data with code the trade off on my time was not worth it. Future runs will need to check these records, and can download the files to match this directory structure, in order to process a update in death rates.
Valid data as of Nov 6 2025 Alex Gebben")
sink()
#Save a processed raw data readme
sink(file=paste0(SAVE_MORT_LOC,"/README_MORTALITY_DATA.txt"),append=FALSE)
cat("This is a processed file of NIH death rates by age and county. Data files first gathered manually from:\n")
cat("\nhttps://hdpulse.nimhd.nih.gov/data-portal/mortality/table?cod=247&cod_options=cod_15&ratetype=aa&ratetype_options=ratetype_2&race=00&race_options=race_6&sex=2&sex_options=sex_3&age=177&age_options=age_11&ruralurban=0&ruralurban_options=ruralurban_3&yeargroup=5&yeargroup_options=year5yearmort_1&statefips=56&statefips_options=area_states&county=56000&county_options=counties_wyoming&comparison=counties_to_us&comparison_options=comparison_counties&radio_comparison=areas&radio_comparison_options=cods_or_areas\n")
cat("\nThese manually saved files are in the raw data directory. Each file is single age group, so age weighting does not apply despite the variable names\n")
sink()

View File

@ -6,13 +6,16 @@ library(readxl)
if(!exists("SAVE_LOC_RAW")){SAVE_LOC_RAW <-"./Data/Raw_Data/"}
RAW_DEMO_LOC <- paste0(SAVE_LOC_RAW,"Demographics/")
dir.create(RAW_DEMO_LOC, recursive = TRUE, showWarnings = FALSE)
if(!exists("SAVE_LOC_RAW_POP")){SAVE_LOC_RAW_POP <-"./Data/Raw_Data/Population"}
dir.create(SAVE_LOC_RAW_POP, recursive = TRUE, showWarnings = FALSE)
#Demographic Reference data
if(!exists("SAVE_LOC_REF")){SAVE_LOC_REF <-paste0(RAW_DEMO_LOC,"Reference_Material_for_Demographics/")}
dir.create(SAVE_LOC_REF, recursive = TRUE, showWarnings = FALSE)
#Start a README file for the raw downloaded demographic data
sink(file=paste0(RAW_DEMO_LOC,"README_DEMOGRAPHIC_DATA.txt"),append=FALSE)
sink(file=paste0(RAW_DEMO_LOC,"/README_DEMOGRAPHIC_DATA.txt"),append=FALSE)
cat("Demographic data used to find age and sex distribution of county populations\n")
sink()
#####Gather data
@ -83,7 +86,7 @@ DEM_DATA <- rbind(DEM_2020,DEM_DATA) %>% ungroup %>% arrange(Year,Age) %>% uniq
saveRDS(LIN_DEM,paste0(RDS_SAVE,"/Full_Lincoln_County_Demographics.Rds" ))
write_csv(LIN_DEM,paste0(CSV_SAVE,"/Full_Lincoln_County_Demographics.csv" ))
run_datetime <- format(Sys.time(), "%Y-%m-%d %H:%M:%S")
sink(file=paste0(SAVE_LOC_RAW_POP,"README_POPULATION_DATA.txt"),append=TRUE)
sink(file=paste0(SAVE_LOC_RAW_POP,"/README_POPULATION_DATA.txt"),append=TRUE)
cat(paste0("\n--- Run Date: ", run_datetime, " ---\n"))
sink()

View File

@ -1,7 +1,8 @@
#library(tidyverse);setwd("../")
library(tidyverse)
library(tidycensus)
library(zipcodeR)
source("Scripts/Get_Sim_Intial_Demographic_Data.r")
#setwd("../")
source("./Scripts/Load_Custom_Functions/Functions_To_Create_Lincoln_Demographic_Data_Using_ACS.r")
if(!exists("SAVE_DEMO_LOC")){SAVE_DEMO_LOC <-"./Data/Cleaned_Data/Demographic_Sex_Age_Data"}
ACS_END_YEAR <- 2023 #most recent in package as of Nov 4 2025
#Pull the relevant median age variables the value moe (margine of error) can be converted to standard error, following the link below
@ -16,7 +17,7 @@ ACS_END_YEAR <- 2023 #most recent in package as of Nov 4 2025
PROJ_TRACTS <- get_tracts(search_city('Kemmerer','WY')$zipcode) %>% full_join(get_tracts(search_city('Diamondville','WY')$zipcode))
PROJ_TRACTS <- PROJ_TRACTS %>% select(GEOID) %>% mutate('IN_KEM'=1) %>% mutate(GEOID=as.character(GEOID))
###Load data manually created which links vairable names to sex-age census data
CODES <- read_csv("Data/API_CENSUS_CODES.csv",skip=1) %>% mutate(Med_Age=(Min_Age+Max_Age)/2) %>% rename(variable=Code)
CODES <- read_csv("./Data/Raw_Data/ACS_Demographics/API_CENSUS_CODES.csv",skip=1) %>% mutate(Med_Age=(Min_Age+Max_Age)/2) %>% rename(variable=Code)
#Testing age Comparison between the two
###Extract census data for all tracts in Lincoln county, clean up the data, and indicate if the tract is in Kemmerer/Diamondvile or not.
DEMO_DATA_ALL <- do.call(rbind,lapply(2009:ACS_END_YEAR,MAKE_KEM_DEMO_DATA_YEAR))

View File

@ -0,0 +1,85 @@
library(tidyverse)
library(fixest)
#setwd("../")
##########################Model Population Trends
##Run Regression
#Pull in Demographic data and create categories for key groups in the regression, male/female population with high fertility, children under one and two (but not zero). This data is broken down by each age group so aggregate to the county, year level for the final regression.
#Fertility age bounds were informed by the regression found in the file ./Scripts/Other_Analysis/Select_Range_of_Male_Female_Fertility.r Which qualitatively supports that the number of people in these age ranges (18-28 Women, 18-30 Men) have the most significance in predicting birth rates. These two are combined into one variable which represent the minimum number of people in the key fertility window between the sexes, this is the binding fertility constraint and has more explanatory power than including either the number of men or women in the fertility window alone, providing a good trade off for including more variables or reducing variance.
if(!exists("DEMOGRAPHIC_COUNTY_LOC")){DEMOGRAPHIC_COUNTY_LOC <- "./Data/Cleaned_Data/Demographic_Sex_Age_Data/RDS/All_Wyoming_Counties_Demographics.Rds"}
if(!exists("DEMOGRAPHIC_KEM_LOC")){DEMOGRAPHIC_KEM_LOC <- "./Data/Cleaned_Data/Demographic_Sex_Age_Data/RDS/Kemmerer_Diamondville_Demographics.Rds"}
if(!exists("DEMOGRAPHIC_OTHER_LIN_LOC")){DEMOGRAPHIC_OTHER_LIN_LOC <- "./Data/Cleaned_Data/Demographic_Sex_Age_Data/RDS/Other_Lincoln_Demographics.Rds"}
if(!exists("POPULATION_COUNTY_LOC")){POPULATION_COUNTY_LOC <- "./Data/Cleaned_Data/Population_Data/RDS/All_Wyoming_County_Populations.Rds"}
if(!exists("POPULATION_CITY_LOC")){POPULATION_CITY_LOC <- "./Data/Cleaned_Data/Population_Data/RDS/All_Wyoming_City_Populations.Rds"}
#Function to make the data consistent for each data set used to run a birth simulation in the Monte Carlo
#DEMO_DATA <- readRDS(DEMOGRAPHIC_KEM_LOC);POP_DATA <- readRDS(POPULATION_CITY_LOC)
MAKE_REG_DATA <- function(DEMO_DATA){
return(DEMO_DATA %>% mutate(Male_Window=Age>=18 & Age<=30,Female_Window=Age>=18 & Age<=28) %>% group_by(County,Region,Year) %>% summarize(Female_Birth_Group=sum(Num_Female*Female_Window,na.rm=TRUE),Male_Birth_Group=sum(Num_Male*Male_Window,na.rm=TRUE),Min_Birth_Group=ifelse(Female_Birth_Group<Male_Birth_Group,Female_Birth_Group,Male_Birth_Group)) %>% ungroup)
}
DEMOGRAPHIC_COUNTY_DATA <- readRDS(DEMOGRAPHIC_COUNTY_LOC)
COUNTY_POP <- readRDS(POPULATION_COUNTY_LOC)
REG_DATA <- readRDS(POPULATION_COUNTY_LOC) %>% full_join(MAKE_REG_DATA(DEMOGRAPHIC_COUNTY_DATA))
REG_DATA <- REG_DATA %>% group_by(County,Region) %>% mutate(PREV_BIRTH=lag(Births),PREV_TWO_BIRTH=lag(Births,2)) %>% ungroup
REG_DATA <- REG_DATA %>% select(-Female_Birth_Group,-Male_Birth_Group) #Store the data set of only the first year needing a birth forecast, to start the birth Monte Carlo simulations.
###Some of the years are missing births, previous births etc. Where missing fill this in by assuming all age zero children in the demographic data (DEMOGRAPHIC_LOC) were born in the last year. This makes a more complete data set. Some test find a near perfect 1 to 1 with this method
#Data to fill in the missing records
FILL_IN_DATA <- DEMOGRAPHIC_COUNTY_DATA %>% mutate(POP=Num_Male+Num_Female,BIRTHS=ifelse(Age==0,POP,0)) %>% group_by(County,Region,Year) %>% summarize(BIRTHS=sum(BIRTHS)) %>% arrange(County,Year) %>% mutate(ALT=lag(BIRTHS),ALT2=lag(BIRTHS,2)) %>% ungroup
#Join and replace missing records
REG_DATA <- REG_DATA %>% left_join(FILL_IN_DATA ) %>% mutate(Births=ifelse(is.na(Births),BIRTHS,Births),PREV_BIRTH=ifelse(is.na(PREV_BIRTH),ALT,PREV_BIRTH),PREV_TWO_BIRTH=ifelse(is.na(PREV_TWO_BIRTH),ALT2,PREV_TWO_BIRTH)) %>% select(-BIRTHS,-ALT,-ALT2) %>% select(Year,County,Region,everything()) %>% mutate(Region=County)
###Working on Kemmerer data
DEMOGRAPHIC_KEM_DATA <- readRDS(DEMOGRAPHIC_KEM_LOC)
readRDS(POPULATION_CITY_LOC) %>% filter(City %in% c("Kemmerer","Diamondville")) %>% group_by(Year) %>% mutate(Population=sum(Population,na.rm=TRUE)) %>% mutate(City='Kemmerer') %>% rename(Region=City)
MAKE_REG_DATA(readRDS(DEMOGRAPHIC_KEM_LOC))
REG_DATA
readRDS(DEMOGRAPHIC_KEM_LOC)%>% mutate(POP=Num_Male+Num_Female,Births=ifelse(Age==0,POP,0)) %>% group_by(County,Region,Year) %>% summarize(Births=sum(Births)) %>% arrange(County,Year) %>% mutate(PREV_BIRTH=lag(Births),PREV_TWO_BIRTH=lag(Births,2)) %>% ungroup
readRDS(DEMOGRAPHIC_KEM_LOC)%>% mutate(Male_Window=Age>=18 & Age<=30,Female_Window=Age>=18 & Age<=28) %>% group_by(County,Year) %>% summarize(Female_Birth_Group=sum(Num_Female*Female_Window,na.rm=TRUE),Male_Birth_Group=sum(Num_Male*Male_Window,na.rm=TRUE),Min_Birth_Group=ifelse(Female_Birth_Group<Male_Birth_Group,Female_Birth_Group,Male_Birth_Group)) %>% ungroup
DEMOGRAPHIC_DATA
TEST <- readRDS(POPULATION_COUNTY_LOC)
if(!("Births" %in% colnames(TEST)))
"Deaths" %in% colnames(TEST)
"Migration" %in% colnames(TEST)
"Migration" %in% colnames(TEST)
readRDS(DEMOGRAPHIC_COUNTY_LOC)
readRDS(POPULATION_COUNTY_LOC)
COUNTY_REG_DATA <- MAKE_REG_DATA(readRDS(DEMOGRAPHIC_COUNTY_LOC),readRDS(POPULATION_COUNTY_LOC) )
readRDS(DEMOGRAPHIC_KEM_LOC)
readRDS(POPULATION_CITY_LOC) %>%
readRDS(DEMOGRAPHIC_KEM_LOC)
readRDS(DEMOGRAPHIC_KEM_LOC)
MAKE_REG_DATA(readRDS(DEMOGRAPHIC_KEM_LOC),readRDS(POPULATION_CITY_LOC) ) %>% filter(!is.na(Region)) %>% pull(Region) %>% unique
%>% pull(Region) %>% unique
%>% filter(Region=='Kemmerer')
readRDS(POPULATION_CITY_LOC)
MAKE_REG_DATA(readRDS("Data/Cleaned_Data/Demographic_Sex_Age_Data/RDS/Kemmerer_Diamondville_Demographics.Rds"),readRDS("Data/Cleaned_Data/Population_Data/RDS/All_Wyoming_City_Populations.Rds"))
#Extract the population trend data to connect with demographics (Population,births,deaths)
POP_DATA <- readRDS(POPULATION_LOC)
#Merger the two data sets and drop any records that cannot be used in the regression (this makes the "predict" function output the right number of records)
REG_DATA <- POP_DATA %>% full_join(DEMOGRAPHIC_DATA)
###Predict the number of Births
MOD_BIRTHS <- feols(log(Births)~log(PREV_BIRTH)+log(PREV_TWO_BIRTH)+log(Min_Birth_Group)+Year*County,cluster=~Year+County, data=REG_DATA ) #Higher AIC but worse acf
#MOD_BIRTHS_ALT <- feols(log(Births)~log(PREV_BIRTH)+log(Min_Birth_Group)+Year*County,cluster=~Year+County, data=REG_DATA )
#AIC(MOD_BIRTHS)<AIC(MOD_BIRTHS_ALT)
#Optional: Review the ACF and PACF for validity. Model made on October 24nd appears to have uncorrelated lags of residuals accept year three.
#acf(resid(MOD_BIRTHS))
#acf(resid(MOD_BIRTHS_ALT))
if(!exists("SAVE_REG_LOC")){SAVE_REG_LOC <- "Data/Intermediate_Inputs"}
dir.create(SAVE_REG_LOC , recursive = TRUE, showWarnings = FALSE)
saveRDS(REG_DATA,SAVE_REG_LOC(paste0(SAVE_REG_LOC,"/Birth_Regression_Data_Set.Rds")))
saveRDS(FIRST_PREDICT_YEAR_POPULATION_DATA,START_DEMOGRAPHIC_DATA) #Save the cleaned data set for later use when starting the simulation.
#Cleanup data no longer needed, and save some RAM
rm(POP_DATA,DEMOGRAPHIC_DATA,REG_DATA)
gc()

View File

@ -18,8 +18,8 @@ GET_ACS_LIN_DATA <- function(ACS_YEAR,ACS_CODES=CODES,CENSUS_TRACTS=PROJ_TRACTS)
return(AGE_DATA)
}
####################Loop to create data for each year. Projecting distribution of ages into Kemmerer, and returning a demographic distribution for Kemmerer/Diamondville in each year of the ACS (currently 2009 to 2023)
MAKE_KEM_DEMO_DATA_YEAR <- function(ACS_YEAR){
LIN_DEMOGRAPHICS <- readRDS("Data/Cleaned_Data/Lincoln_Demographic_Data.Rds") %>% filter(Year==ACS_YEAR)
MAKE_KEM_DEMO_DATA_YEAR <- function(ACS_YEAR,LIN_DEMOGRAPHOC_DATA_LOCATION="./Data/Cleaned_Data/Demographic_Sex_Age_Data/RDS/Full_Lincoln_County_Demographics.Rds"){
LIN_DEMOGRAPHICS <- readRDS(LIN_DEMOGRAPHOC_DATA_LOCATION) %>% filter(Year==ACS_YEAR)
AGE_DATA <- GET_ACS_LIN_DATA(ACS_YEAR)
for(i in 1:nrow(AGE_DATA)){
if(i==1 & exists("RES")){rm(RES)}