Running Lincoln sim
This commit is contained in:
parent
747f752f61
commit
fa11049040
3
.gitignore
vendored
3
.gitignore
vendored
@ -1,4 +1,7 @@
|
|||||||
# ---> R
|
# ---> R
|
||||||
|
#
|
||||||
|
*.png
|
||||||
|
Results/
|
||||||
#Don't save any major data files on the server, can be regenerated after pulling
|
#Don't save any major data files on the server, can be regenerated after pulling
|
||||||
*.Rds
|
*.Rds
|
||||||
# ##Very large simulation should not be saved
|
# ##Very large simulation should not be saved
|
||||||
|
|||||||
@ -53,7 +53,8 @@ SINGLE_PATH_SIM <- function(j){
|
|||||||
#Run the loop
|
#Run the loop
|
||||||
for(x in 1:NUM_RUNS) {
|
for(x in 1:NUM_RUNS) {
|
||||||
BATCH_GUID <- UUIDgenerate()
|
BATCH_GUID <- UUIDgenerate()
|
||||||
FULL_RESULTS <- mclapply(1:BATCH_SIZE,SINGLE_PATH_SIM,mc.cores = detectCores()-1)
|
try(FULL_RESULTS <- mclapply(1:BATCH_SIZE,function(x){try(SINGLE_PATH_SIM(x))},mc.cores = detectCores()-1))
|
||||||
|
if(exists("FULL_RESULTS")){
|
||||||
FULL_RESULTS <- do.call(rbind,lapply(1:BATCH_SIZE,function(x){FULL_RESULTS[[x]] %>% mutate(SIM_ID=UUIDgenerate())}))
|
FULL_RESULTS <- do.call(rbind,lapply(1:BATCH_SIZE,function(x){FULL_RESULTS[[x]] %>% mutate(SIM_ID=UUIDgenerate())}))
|
||||||
FULL_RESULTS$BATCH_ID <- BATCH_GUID
|
FULL_RESULTS$BATCH_ID <- BATCH_GUID
|
||||||
FULL_RESULTS <- FULL_RESULTS%>% select(BATCH_ID,SIM_ID,everything())
|
FULL_RESULTS <- FULL_RESULTS%>% select(BATCH_ID,SIM_ID,everything())
|
||||||
@ -61,14 +62,6 @@ for(x in 1:NUM_RUNS) {
|
|||||||
rm(FULL_RESULTS)
|
rm(FULL_RESULTS)
|
||||||
gc()
|
gc()
|
||||||
}
|
}
|
||||||
|
}
|
||||||
###Process the simulations and save the main percentile results by year
|
|
||||||
FULL_RESULTS <- read_csv(RAW_SIM_FILE)
|
|
||||||
GRAPH_DATA <- do.call(rbind,lapply(YEARS,function(x){quantile(RES %>% filter(Year==x) %>% pull(Population),c(0.05,0.1,0.25,0.5,0.75,0.9,0.95))})) %>% as_tibble
|
|
||||||
YEARS <- 2023:(2023+NUM_YEARS_PROJECTED)
|
|
||||||
GRAPH_DATA$Year <- YEARS
|
|
||||||
GRAPH_DATA <- GRAPH_DATA %>% pivot_longer(cols=!Year,names_to=c("Percentile"),values_to="Population")
|
|
||||||
write_csv(GRAPH_DATA,PERCENTILE_DATA)
|
|
||||||
ggplot(aes(x=Year,y=Population,group=Percentile,color=Percentile),data=GRAPH_DATA)+geom_line()
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
28
2_Result_Analysis.r
Normal file
28
2_Result_Analysis.r
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
library(tidyverse)
|
||||||
|
NUM_YEARS_PROJECTED <- 50 #How many years into the future should each Monte Carlo run project to. For example 25 years if starting from 2025 and ending in 2050.
|
||||||
|
YEARS <- 2023:(2023+NUM_YEARS_PROJECTED)
|
||||||
|
#Setup save results
|
||||||
|
RES_DIR <- "./Results"
|
||||||
|
RAW_SIM_FILE <- paste0(RES_DIR,"/Raw_Simulations.csv")
|
||||||
|
PERCENTILE_DATA <- paste0(RES_DIR,"/Percentile_Clean_Results.csv")
|
||||||
|
|
||||||
|
###Process the simulations and save the main percentile results by year
|
||||||
|
RES <- read_csv(RAW_SIM_FILE)
|
||||||
|
GRAPH_DATA <- do.call(rbind,lapply(YEARS,function(x){quantile(RES %>% filter(Year==x) %>% pull(Population),c(0.025,0.05,0.1,0.25,0.4,0.5,0.6,0.75,0.9,0.95,0.975))})) %>% as_tibble
|
||||||
|
YEARS <- 2023:(2023+NUM_YEARS_PROJECTED)
|
||||||
|
GRAPH_DATA$Year <- YEARS
|
||||||
|
FAN_DATA <- GRAPH_DATA
|
||||||
|
GRAPH_DATA <- GRAPH_DATA %>% pivot_longer(cols=!Year,names_to=c("Percentile"),values_to="Population")
|
||||||
|
write_csv(GRAPH_DATA,PERCENTILE_DATA)
|
||||||
|
#Add historic
|
||||||
|
MEDIAN_PRED <- GRAPH_DATA %>% filter(Percentile=='50%')
|
||||||
|
GRAPH_DATA <- GRAPH_DATA %>% filter(Percentile!='50%')
|
||||||
|
|
||||||
|
HIST <- readRDS("Data/Cleaned_Data/Wyoming_County_Population.Rds") %>% filter(County=='Lincoln') %>% mutate(Percentile="Actual Population") %>% filter(Year>1930)
|
||||||
|
ALPHA=0.2
|
||||||
|
COLOR <- 'black'
|
||||||
|
GRAPH_DATA$Percentile <- factor(GRAPH_DATA$Percentile,levels=rev(c('2.5%','5%','10%','25%','40%','60%','75%','90%','95%','97.5%')))
|
||||||
|
GRAPH <- ggplot(data=GRAPH_DATA)+geom_ribbon(data=FAN_DATA,aes(x=Year,ymin=`2.5%`,ymax=`97.5%`),alpha=ALPHA,fill=COLOR)+geom_ribbon(data=FAN_DATA,aes(x=Year,ymin=`5%`,ymax=`95%`),alpha=ALPHA,fill=COLOR)+geom_ribbon(data=FAN_DATA,aes(x=Year,ymin=`10%`,ymax=`90%`),alpha=ALPHA,fill=COLOR)+geom_ribbon(data=FAN_DATA,aes(x=Year,ymin=`25%`,ymax=`75%`),alpha=ALPHA,fill=COLOR)+geom_ribbon(data=FAN_DATA,aes(x=Year,ymin=`40%`,ymax=`60%`),alpha=ALPHA,fill=COLOR)+geom_line(aes(x=Year,y=Population,group=Percentile,color=Percentile))+geom_line(data=HIST,aes(x=Year,y=Population),color='black',size=0.75)+geom_line(data=MEDIAN_PRED,aes(x=Year,y=Population),color='black',linetype=4,size=0.75)+ scale_x_continuous(breaks = c(seq(1940, 2070, by = 10)))+ scale_y_continuous(breaks = seq(0, 35000, by = 5000))+theme_bw()+ggtitle("Lincoln County, Wyoming Population Forecast")
|
||||||
|
GRAPH
|
||||||
|
ggsave("Lincoln_Forecast.png",GRAPH)
|
||||||
|
|
||||||
@ -60,7 +60,8 @@ GRAPH_DATA <- RES %>% filter(abs(MIGRATION_COEF)<Inf,Age<100) %>% filter(Age!=2
|
|||||||
##Graph when using log scales and grouping by child/adult. Looks pretty linear
|
##Graph when using log scales and grouping by child/adult. Looks pretty linear
|
||||||
#ggplot(GRAPH_DATA,aes(x=Age,y=MIGRATION_COEF,group=Group,color=Group)) +geom_point()+geom_smooth(method="lm")+ scale_y_continuous(trans = scales::log_trans())
|
#ggplot(GRAPH_DATA,aes(x=Age,y=MIGRATION_COEF,group=Group,color=Group)) +geom_point()+geom_smooth(method="lm")+ scale_y_continuous(trans = scales::log_trans())
|
||||||
#Graph when not using log scale but including a geom_smooth to show the actual trend.
|
#Graph when not using log scale but including a geom_smooth to show the actual trend.
|
||||||
#ggplot(GRAPH_DATA,aes(x=Age,y=MIGRATION_COEF,group=Group,color=Group)) +geom_point()+geom_smooth(span=0.9)
|
#GRAPH <-ggplot(GRAPH_DATA,aes(x=Age,y=MIGRATION_COEF,group=Group,color=Group)) +geom_point()+geom_smooth(span=0.9)+ylab("Migration Coefficient (Pop. Change Per Added Immigrant)")
|
||||||
|
#ggsave("Migration_Age_Distribution.png",GRAPH)
|
||||||
|
|
||||||
####Create results which find a functional form for the probability that a migrant is in a certain age bracket, so that the probability of any age can be drawn from in the Monte Carlo for net migration numbers. Note that a function is used, because point estimates will have large variably, but the overall trend looks VERY clean.
|
####Create results which find a functional form for the probability that a migrant is in a certain age bracket, so that the probability of any age can be drawn from in the Monte Carlo for net migration numbers. Note that a function is used, because point estimates will have large variably, but the overall trend looks VERY clean.
|
||||||
CHILD_MOD <- lm(log(MIGRATION_COEF)~Age,data=GRAPH_DATA %>% filter(Group=='Child')) #The childhood range (1-18), has a great exponential fit with age, but has a different trend than adults. Because there are fewer data points we prefer a exponential fit, compared to a smoothed fit as the variance changes the end points, yet in both cases a exponential fit looks good.
|
CHILD_MOD <- lm(log(MIGRATION_COEF)~Age,data=GRAPH_DATA %>% filter(Group=='Child')) #The childhood range (1-18), has a great exponential fit with age, but has a different trend than adults. Because there are fewer data points we prefer a exponential fit, compared to a smoothed fit as the variance changes the end points, yet in both cases a exponential fit looks good.
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user