library(tidyverse) library(tidycensus) library(zipcodeR) install.packages("zipcodeR") install.packages("units") #install.packages("terra") census_api_key(KEY, install = TRUE) KEY <- '30e13ab22563318ff59286e433099f4174d4edd4' #Ex TRACTS <-get_tracts(search_city('Kemmerer','WY')$zipcode) %>% full_join(get_tracts(search_city('Diamondville','WY')$zipcode)) get_decennial(geography="tract",variables=vars,state='WY',county='lincoln') c('B01002_001E','B01002_002E','B01002_003E') c('Median_Age','Median_Age_Male','Median_Age_Female') get_acs(geography="tract",variables=vars,state='WY',county='lincoln',GEOID='56023978400') ######MALE #Variable names from: https://api.census.gov/data/2019/acs/acs1/variables.html sapply(1:25,function(x){paste0("B01001_00",x,"E")}) c(seq(0,15,by=5),18,20,21,22,seq(25,85,by=5)) c(seq(4,17,by=5),17,19,20,21,24,seq(29,84,by=5)) CODES <- read_csv("Data/API_CENSUS_CODES.csv") %>% mutate(Med_Age=(Min_Age+Max_Age)/2) VARS <- CODES$Code #Testing age Comparison between the two TEMP <- get_acs(geography="tract",variables=VARS,state='WY',county='lincoln') KEM <- TEMP %>% filter(GEOID=='56023978400') KEM 19/sum(KEM$estimate) LN <- TEMP %>% filter(GEOID!='56023978400') LN 19/sum(KEM$estimate)