#####Packages library(tidyverse) #Cleaning data library(fixest) #Estimating a model of birth rates, to provide variance in the birth rate Monte Carlo using a fixed effect model. library(forecast) #Fore ARIMA migration simulations library(parallel) library(uuid) #To add a index to each batch ####If the prelimnary data needs to be reloaded run the supplied bash script to download, process, and generate all needed data sets for the Monte Carlo population Simulation. Otherwise skip this step to save time RELOAD_DATA <- FALSE if(RELOAD_DATA){system("bash Prelim_Process.sh")} #Load custom functions needed for the simulation source("Scripts/Load_Custom_Functions/Migration_Simulation_Functions.r") source("Scripts/Load_Custom_Functions/Birth_Simulation_Functions.r") source("Scripts/Load_Custom_Functions/Increment_Data_Year.r") source("Scripts/Load_Custom_Functions/Single_Age_Mortality_Trend_Simulation.r") #######Preliminary Model Inputs YEARS_AHEAD <- 43 ST_YEAR <- 2023 ################################Load Data DEMO <- readRDS("Data/Intermediate_Inputs/Starting_Demographic_Data_Sets_of_Monte_Carlo/2023_Starting_Kemmerer_Diamondville_Demographics_Matrix.Rds") BIRTH_MOD <- readRDS("Data/Intermediate_Inputs/Birth_Regressions/Birth_Regression.Rds") #Must add region as a factor with multiple levels for predict to work. Seems to check for multiple levels although that is not needed econometrics. BIRTH_DATA <- readRDS("Data/Intermediate_Inputs/Birth_Regressions/Regression_Data/Birth_Simulation_Key_Starting_Points.Rds") %>% mutate(Region=factor(Region)) %>% filter(KEM==1,Year==2023) MIGRATION_ARIMA <- readRDS("Data/Intermediate_Inputs/Migration_ARIMA_Models/Kemmerer_Diamondville_Net_Migration_ARIMA.Rds") MIGRATION_ODDS <- readRDS("Data/Intermediate_Inputs/Migration_Trends/Migration_Age_Probability_Zero_to_85.Rds") ############## #Data for death rate trends SINGLE_AGE_MODS <- readRDS("Data/Intermediate_Inputs/Mortality_Regression_Data/Single_Sex_Age_Time_Series_Regression.Rds") BOUNDS <- readRDS("Data/Intermediate_Inputs/Mortality_Regression_Data/Single_Sex_Age_Bounds_for_Predictions.Rds") MAX_MALE <- BOUNDS %>% filter(Sex=='Male') %>% pull(MAX_RATE) MIN_MALE <- BOUNDS %>% filter(Sex=='Male') %>% pull(MIN_RATE) MAX_FEMALE <- BOUNDS %>% filter(Sex=='Female') %>% pull(MAX_RATE) MIN_FEMALE <- BOUNDS %>% filter(Sex=='Female') %>% pull(MIN_RATE) MIN_GAP <- BOUNDS %>% filter(Sex=='Male') %>% pull(MIN_MALE_FEMALE_GAP) MAX_GAP <- BOUNDS %>% filter(Sex=='Male') %>% pull(MAX_MALE_FEMALE_GAP) BASELINE_AGE_ADJUST_MEN <- readRDS("Data/Cleaned_Data/Mortality_Data/RDS/Single_Sex_Age_Population_in_2000.Rds") %>% filter(Sex=='Male') %>% pull(Percent_of_Population) BASELINE_AGE_ADJUST_WOMEN <- readRDS("Data/Cleaned_Data/Mortality_Data/RDS/Single_Sex_Age_Population_in_2000.Rds") %>% filter(Sex=='Female') %>% pull(Percent_of_Population) #Adjust to just women popualtion (Not all population percent BASELINE_AGE_ADJUST_WOMEN <- BASELINE_AGE_ADJUST_WOMEN/sum(BASELINE_AGE_ADJUST_WOMEN ) BASELINE_AGE_ADJUST_MEN <- BASELINE_AGE_ADJUST_MEN/ sum(BASELINE_AGE_ADJUST_MEN ) MOD_MEN_ALL <- readRDS("Data/Intermediate_Inputs/Age_Mortality_ARIMA_Models/ARIMA_US_Men_Mortality_by_Age.Rds") MOD_WOMEN_ALL <- readRDS("Data/Intermediate_Inputs/Age_Mortality_ARIMA_Models/ARIMA_US_Women_Mortality_by_Age.Rds") MOD_LIN_MEN <- readRDS("Data/Intermediate_Inputs/Age_Mortality_ARIMA_Models/ARIMA_Lincoln_Men_Mortality_by_Age.Rds") MOD_LIN_WOMEN <- readRDS("Data/Intermediate_Inputs/Age_Mortality_ARIMA_Models/ARIMA_Lincoln_Women_Mortality_by_Age.Rds") XREG <- cbind(rep(0.0001,YEARS_AHEAD+1),rep(0.0001,YEARS_AHEAD+1)) #Empty data set to simulate in the future XREG <- ts(XREG,start=ST_YEAR,frequency=1) SIMULATE_MORTALITY_RATE_TRENDS <- function(){ SIMULATED_MORTALITY_DATA_SET <- MAKE_EMPTY(ST_YEAR,ST_YEAR+YEARS_AHEAD,MOD_LIN_MEN,MOD_LIN_WOMEN,MOD_MEN_ALL,MOD_WOMEN_ALL,XREG) MORTALITY_SIMULATION <- AGE_DIST(SINGLE_AGE_MODS,SIMULATED_MORTALITY_DATA_SET ,MAX_MALE,MAX_FEMALE,MIN_MALE,MIN_FEMALE,MAX_GAP,MIN_GAP,BASELINE_AGE_ADJUST_MEN,BASELINE_AGE_ADJUST_WOMEN) return(MORTALITY_SIMULATION ) } #####################START YEAR BY SIMULATIONS #CURRENT_YEARS_AHEAD=1;CURRENT_SIM_NUM <- 1;MORTALITY_SIMULATION <- SIMULATE_MORTALITY_RATE_TRENDS() SINGLE_YEAR_SIM <- function(DEMO,BIRTH_DATA,CURRENT_YEARS_AHEAD,MORTALITY_SIMULATION,NET_MIGRATION){ ORIG_DEMO <- DEMO DEMO <- DEMOGRAPHICS_AFTER_MIGRATION(DEMO, NET_MIGRATION,MIGRATION_ODDS ) TOTAL_MIGRATION <- sum(DEMO-ORIG_DEMO) BIRTH_DATA$Year <- BIRTH_DATA$Year+1 BIRTH_DATA$Lag_Two_Births <- BIRTH_DATA$Lag_Births BIRTH_DATA$Lag_Births <- BIRTH_DATA$Births BIRTH_DATA$Births <- NA ##We grab one year earlier than the window because they are one year older this year. Because the ages are from 0-85, row 18 is year 17, but one year is added making it 18 years in the current year. The birth windows are 18-28 for women and 18-30 for men. BIRTH_DATA$Min_Birth_Group <- min(sum(DEMO[18:30,1]),sum(DEMO[18:28,2])) NEW_BORNS <- BIRTH_SIM(BIRTH_MOD,BIRTH_DATA) TOTAL_BIRTHS <- sum(NEW_BORNS) BIRTH_DATA[,"Births"] <- TOTAL_BIRTHS DEMO <- INCREMENT_AGES(DEMO,NEW_BORNS) MORTALITY_SIMULATION MALE_DEATHS <- sapply(1:86,function(x){rbinom(1,DEMO[x,1],MORTALITY_SIMULATION[[1]][x,CURRENT_YEARS_AHEAD])}) FEMALE_DEATHS <- sapply(1:86,function(x){rbinom(1,DEMO[x,2],MORTALITY_SIMULATION[[2]][x,CURRENT_YEARS_AHEAD])}) MALE_DEATHS <- ifelse(MALE_DEATHS>=DEMO[,1],DEMO[,1],MALE_DEATHS) FEMALE_DEATHS <- ifelse(FEMALE_DEATHS>=DEMO[,1],DEMO[,1],FEMALE_DEATHS) TOTAL_DEATHS <- sum(MALE_DEATHS+FEMALE_DEATHS) DEMO[,"Num_Male"] <- DEMO[,"Num_Male"] -MALE_DEATHS DEMO[,"Num_Female"] <- DEMO[,"Num_Female"] -FEMALE_DEATHS #List of values needed for the next run or for reporting a result TOTAL_POP <- sum(DEMO) return(list(DEMO,BIRTH_DATA,c(TOTAL_POP,TOTAL_BIRTHS,TOTAL_DEATHS,TOTAL_MIGRATION))) } MIGRATION_ARIMA_MODEL <- MIGRATION_ARIMA SINGLE_SIM <- function(DEMO,BIRTH_DATA,ST_YEAR,YEARS_AHEAD,MIGRATION_ARIMA_MODEL){ TERRA_POWER_EFFECT <- rep(0,YEARS_AHEAD) POP_WORK_RATIO <-3716/1920.54 #Total population of Kemmerer in 2024 divided total employment both are found in IMPLAN region details for zip code 83101 TERRA_POWER_EFFECT[3:7] <- POP_WORK_RATIO*310.75/5 #Total IMPLAN job estimate times adjusted for families and spread over five years MIGRATION_SIM_VALUES <- round(as.vector(simulate(nsim=YEARS_AHEAD,MIGRATION_ARIMA_MODEL)+runif(1,-55,0))+TERRA_POWER_EFFECT) #The runif applies a downshift ranging from the historic decline rate all the way to the Lincoln rate applied in the model FINAL_REPORT_VALUES <- matrix(NA,ncol=6,nrow=YEARS_AHEAD) colnames(FINAL_REPORT_VALUES ) <- c("Sim_UUID","Year","Population","Births","Deaths","Net_Migration") FINAL_REPORT_VALUES[,1] <- UUIDgenerate() for(i in 1:YEARS_AHEAD){ C_YEAR <- ST_YEAR+i-1 C_RES <-SINGLE_YEAR_SIM(DEMO,BIRTH_DATA,i,SIMULATE_MORTALITY_RATE_TRENDS(),MIGRATION_SIM_VALUES[i]) DEMO <- C_RES[[1]] BIRTH_DATA <- C_RES[[2]] FINAL_REPORT_VALUES[i,-1] <- c(C_YEAR,C_RES[[3]]) } return(FINAL_REPORT_VALUES) } if(!exists("RES_DIR")){RES_DIR<- "./Results/"} if(!exists("RES_SIM_DIR")){RES_SIM_DIR <- paste0(RES_DIR,"Simulations/")} dir.create(RES_SIM_DIR, recursive = TRUE, showWarnings = FALSE) NCORES <- detectCores()-1 BATCH_SIZE <- NCORES*10 TOTAL_SIMULATIONS <- 10^6 N_RUNS <-ceiling(TOTAL_SIMULATIONS/BATCH_SIZE ) SIM_RES_FILE <- paste0(RES_SIM_DIR,"Kemmerer_2023_Simulation.csv") NEW_RES_FILE <- !file.exists(SIM_RES_FILE) for(i in 1:N_RUNS){ # MIGRATION_MATRIX <- simulate(nsim=BATCH_SIZE,MIGRATION_ARIMA,n=YEARS_AHEAD) MIGRATION_MATRIX <- do.call(cbind, mclapply(1:BATCH_SIZE,function(x)(as.vector(simulate(nsim=YEARS_AHEAD,MIGRATION_ARIMA) )),mc.cores = detectCores()-1)) # rownames(MIGRATION_MATRIX) <- ST_YEAR:(ST_YEAR+YEARS_AHEAD-1) # colnames(MIGRATION_MATRIX) <- 1:BATCH_SIZE try(RES <- do.call(rbind,mclapply(1:BATCH_SIZE,function(x){SINGLE_SIM(DEMO,BIRTH_DATA,ST_YEAR,YEARS_AHEAD,MIGRATION_ARIMA)},mc.cores=NCORES))) if(exists("RES")){ RES <- as.data.frame(RES) RES[,-1] <- as.numeric(as.matrix(RES[,-1])) if(NEW_RES_FILE & i==1){write_csv(RES,SIM_RES_FILE)}else {write_csv(RES,SIM_RES_FILE,col_names=FALSE,append=TRUE)} rm(RES) } }