library(tidyverse) library(bayesPop) library(bayesMig) DAT <- read_tsv(us.mig.file) DAT[,2] %>% t sum(DAT$`2001`) # Toy simulation for US states dir.create("Output") sim.dir <- "./Output" us.mig.file <- file.path(find.package("bayesMig"), "extdata", "USmigrates.txt") m <- run.mig.mcmc(nr.chains = 2, iter = 100000, thin = 1, my.mig.file = us.mig.file, output.dir = sim.dir, present.year = 2017, annual = TRUE) pred <- mig.predict(sim.dir = sim.dir, burnin = 5, end.year = 2050) mig.trajectories.plot(pred, "Wyoming", pi = 80, ylim = c(-0.03, 0.03)) load("./Output/bayesMig.mcmc.meta.rda") ############# #subnat example data.dir <- "./extdata" dir.create("Pop_Output") sim.dir <- "./Pop_Output" dir.create("Output") example(pop.predict.subnat) read_tsv(file.path(data.dir, "CANlocations.txt")) pred <- pop.predict.subnat(output.dir = sim.dir, locations = file.path(data.dir, "CANlocations.txt"), inputs = list(popM = file.path(data.dir, "CANpopM.txt"),popF = file.path(data.dir, "CANpopF.txt")), verbose = TRUE) pop.pyramid(pred, "Ontario") ?pop.pyramid summary(pred) write.pop.trajectories(pred) load("Pop_Output/predictions/prediction.rda")