library(tidyverse) library(gt) #For nice color coded capacity limits table. source("Scripts/Load_Custom_Functions/Fan_Chart_Creation_Functions.r") #Functions created to make nice graphs if(!exists("SAVE_RES_LOC")){SAVE_RES_LOC <- "./Results/Primary_Simulation_Results/Main_Results/"} dir.create(SAVE_RES_LOC, recursive = TRUE, showWarnings = FALSE) ###Process the simulations and save the main percentile results by year RES <- read_csv("Results/Simulations/Kemmerer_2024_With_Data_Center_Simulation.csv") RES[,"Year"] <- RES[,"Year"] RES<- RES %>% filter(!is.na(Year)) RES <- RES %>% filter(!is.na(Population)) HIST <- readRDS("Data/Cleaned_Data/Population_Data/RDS/Kemmerer_Diamondville_Population_Data.Rds") %>% filter(County=='Lincoln') %>% mutate(Percentile="Actual Population") %>% filter(Year>=1940) MAKE_GRAPH <- function(C_DATA,COL_NUM,TITLE=NA){ YEARS <- min(C_DATA$Year,na.rm=TRUE):max(RES$Year,na.rm=TRUE) LEVELS <- seq(0.00,1,by=0.025) FAN_DATA <- do.call(rbind,lapply(YEARS,function(x){quantile(as.numeric(t((C_DATA %>% filter(Year==x))[,COL_NUM])),LEVELS)})) %>% as_tibble %>% mutate(Year=YEARS) LEVELS <- seq(0.00,1,by=0.025) CI_BANDS <- do.call(rbind,lapply(YEARS,function(x){quantile(as.numeric(t((C_DATA %>% filter(Year==x))[,COL_NUM])),c(0.025,0.975,0.5,0.1,0.9))})) %>% as_tibble %>% mutate(Year=YEARS) CI_BANDS <- CI_BANDS %>% pivot_longer(!Year,names_to="Percentile",values_to="value") CI_BANDS$Interval <- ifelse(CI_BANDS$Percentile %in% c('2.5%','97.5%'),'95%',NA) CI_BANDS$Interval <- ifelse(CI_BANDS$Percentile %in% c('10%','90%'),'80%',CI_BANDS$Interval) CI_BANDS$Interval <- ifelse(CI_BANDS$Percentile %in% c('50%'),'Median Prediction',CI_BANDS$Interval) FAN_DATA <- FAN_DATA %>% pivot_longer(!Year,names_to="Percentile",values_to="value") %>% group_by(Year) %>% mutate(DIFF=c(NA,diff(value))) ST_VAL <- as.numeric((HIST %>% filter(Year==2024))[,COL_NUM+1]) FAN_DATA <- rbind(FAN_DATA %>% filter(Year==2025) %>% mutate(Year=2024,value=ST_VAL),FAN_DATA) GRAPH_DATA <- FAN_DATA %>% group_by(Year) %>% mutate(MIN_RANGE=lag(parse_number(Percentile)/100),MAX_RANGE=parse_number(Percentile)/100,MIN_VAL=lag(value),MAX_VAL=value) %>% filter(!is.na(DIFF)) GRAPH_DATA[GRAPH_DATA$Year==2024,'DIFF'] <- 0 return(ggplot(GRAPH_DATA %>% filter(MIN_RANGE>=0.002,MAX_RANGE<=0.998) )+geom_ribbon(aes(group=Percentile,x=Year,ymin=MIN_VAL,ymax=MAX_VAL,fill=DIFF,alpha=-DIFF))+geom_line(data=CI_BANDS %>% filter(Interval=='Median Prediction'),aes(x=Year,y=value,group=Percentile,linetype=Interval,color=Interval),linewidth=0.75)+scale_color_manual(values=c("grey80","black"),name='Median Prediction')+scale_linetype_manual(values = c("dotdash"),guide="none")+ggtitle(TITLE)+ theme_gray()+ theme(legend.position = "top",panel.grid.minor = element_blank())+scale_alpha(range = c(0, 1),guide="none")+theme(legend.text = element_blank())) } ###Main Results SCALE_FACTOR <- 1.25 png(paste0(SAVE_RES_LOC,"Population_Fan_Chart_Main_Results.png"), width = 12*SCALE_FACTOR, height = 8*SCALE_FACTOR, units = "in", res = 600) MAKE_GRAPH(RES,3 ,"")+geom_line(data=HIST,aes(x=Year,y=Population),color='black',linewidth=1)+ scale_y_continuous(breaks = seq(0, 35000, by = 500))+ expand_limits( y = 0)+labs(y="Population")+ scale_x_continuous(breaks = c(seq(1940, 2060, by = 10),2065))+scale_fill_gradient(high= "#132B43", low= "#56B1F7",name ="Likelhood\n(0%-100%)", trans = 'reverse') dev.off() png(paste0(SAVE_RES_LOC,"Birth_Fan_Chart_Main_Results.png"), width = 12*SCALE_FACTOR, height = 8*SCALE_FACTOR, units = "in", res = 600) MAKE_GRAPH(RES,4 ,"")+geom_line(data=HIST %>% filter(!is.na(Births)),aes(x=Year,y=Births),color='black',linewidth=0.75)+ scale_y_continuous(breaks = seq(0, 35000, by = 10))+ expand_limits( y = 0)+labs(y="Births")+ scale_x_continuous(breaks = c(2009,seq(2015, 2065, by = 5)))+scale_fill_gradient(high= "#132B43", low= "#56B1F7",name ="Likelhood\n(0%-100%)", trans = 'reverse')+theme(legend.position = "none") dev.off() png(paste0(SAVE_RES_LOC,"Mortality_Fan_Chart_Main_Results.png"), width = 12*SCALE_FACTOR, height = 8*SCALE_FACTOR, units = "in", res = 600) MAKE_GRAPH(RES,5 ,"")+geom_line(data=HIST %>% filter(!is.na(Deaths)),aes(x=Year,y=Deaths),color='black',linewidth=0.75)+ scale_y_continuous(breaks = seq(0, 35000, by = 10))+ expand_limits( y = 0)+labs(y="Deaths")+ scale_x_continuous(breaks = c(2009,seq(2015, 2065, by = 5)))+scale_fill_gradient(high= "#132B43", low= "#56B1F7",name ="Likelhood\n(0%-100%)", trans = 'reverse')+theme(legend.position = "none") dev.off() png(paste0(SAVE_RES_LOC,"Migration_Fan_Chart_Main_Results.png"), width = 12*SCALE_FACTOR, height = 8*SCALE_FACTOR, units = "in", res = 600) MAKE_GRAPH(RES,6 ,"")+geom_line(data=HIST %>% filter(!is.na(Migration)),aes(x=Year,y=Migration),color='black',linewidth=0.75)+ scale_y_continuous(breaks = seq(-1000, 35000, by = 100))+ expand_limits( y = 0)+labs(y="Migration")+ scale_x_continuous(breaks = c(2009,seq(2015, 2065, by = 5)))+scale_fill_gradient(high= "#132B43", low= "#56B1F7",name ="Likelhood\n(0%-100%)", trans = 'reverse')+theme(legend.position = "none") dev.off() ###########High Estiamtes if(!exists("SAVE_RES_LOC_HIGH")){SAVE_RES_LOC_HIGH <- "./Results/Primary_Simulation_Results/Upper_Bound_Results/"} dir.create(SAVE_RES_LOC_HIGH, recursive = TRUE, showWarnings = FALSE) RES_HIGH <- RES %>% filter(Growth_Rate=='HIGH') COLOR1 <- 'forestgreen' COLOR2 <- 'yellow' png(paste0(SAVE_RES_LOC_HIGH,"Population_Fan_Chart_High_Growth_Results.png"), width = 12*SCALE_FACTOR, height = 8*SCALE_FACTOR, units = "in", res = 600) MAKE_GRAPH(RES_HIGH,3 ,"")+geom_line(data=HIST,aes(x=Year,y=Population),color='black',linewidth=1)+ scale_y_continuous(breaks = seq(0, 35000, by = 500))+ expand_limits( y = 0)+labs(y="Population")+ scale_x_continuous(breaks = c(seq(1940, 2060, by = 10),2065))+scale_fill_gradient(high= COLOR1, low= COLOR2,name ="Likelhood\n(0%-100%)", trans = 'reverse') dev.off() png(paste0(SAVE_RES_LOC_HIGH,"Birth_Fan_Chart_High_Growth_Results.png"), width = 12*SCALE_FACTOR, height = 8*SCALE_FACTOR, units = "in", res = 600) MAKE_GRAPH(RES_HIGH,4 ,"")+geom_line(data=HIST %>% filter(!is.na(Births)),aes(x=Year,y=Births),color='black',linewidth=0.75)+ scale_y_continuous(breaks = seq(0, 35000, by = 10))+ expand_limits( y = 0)+labs(y="Births")+ scale_x_continuous(breaks = c(2009,seq(2015, 2065, by = 5)))+scale_fill_gradient(high= COLOR1, low= COLOR2,name ="Likelhood\n(0%-100%)", trans = 'reverse')+theme(legend.position = "none") dev.off() png(paste0(SAVE_RES_LOC_HIGH,"Mortality_Fan_Chart_High_Growth_Results.png"), width = 12*SCALE_FACTOR, height = 8*SCALE_FACTOR, units = "in", res = 600) MAKE_GRAPH(RES_HIGH,5 ,"")+geom_line(data=HIST %>% filter(!is.na(Deaths)),aes(x=Year,y=Deaths),color='black',linewidth=0.75)+ scale_y_continuous(breaks = seq(0, 35000, by = 10))+ expand_limits( y = 0)+labs(y="Deaths")+ scale_x_continuous(breaks = c(2009,seq(2015, 2065, by = 5)))+scale_fill_gradient(high= COLOR1, low= COLOR2,name ="Likelhood\n(0%-100%)", trans = 'reverse')+theme(legend.position = "none") dev.off() png(paste0(SAVE_RES_LOC_HIGH,"Migration_Fan_Chart_High_Growth_Results.png"), width = 12*SCALE_FACTOR, height = 8*SCALE_FACTOR, units = "in", res = 600) MAKE_GRAPH(RES_HIGH,6 ,"")+geom_line(data=HIST %>% filter(!is.na(Migration)),aes(x=Year,y=Migration),color='black',linewidth=0.75)+ scale_y_continuous(breaks = seq(-1000, 35000, by = 100))+ expand_limits( y = 0)+labs(y="Migration")+ scale_x_continuous(breaks = c(2009,seq(2015, 2065, by = 5)))+scale_fill_gradient(high= COLOR1, low= COLOR2,name ="Likelhood\n(0%-100%)", trans = 'reverse')+theme(legend.position = "none") dev.off() ###########Low Estiamtes if(!exists("SAVE_RES_LOC_LOW")){SAVE_RES_LOC_LOW <- "./Results/Primary_Simulation_Results/Lower_Bound_Results/"} dir.create(SAVE_RES_LOC_LOW, recursive = TRUE, showWarnings = FALSE) RES_LOW <- RES %>% filter(Growth_Rate!='HIGH') COLOR1 <- 'firebrick3' COLOR2 <- 'white' png(paste0(SAVE_RES_LOC_LOW,"Population_Fan_Chart_Low_Growth_Results.png"), width = 12*SCALE_FACTOR, height = 8*SCALE_FACTOR, units = "in", res = 600) MAKE_GRAPH(RES_LOW,3 ,"")+geom_line(data=HIST,aes(x=Year,y=Population),color='black',linewidth=1)+ scale_y_continuous(breaks = seq(0, 35000, by = 500))+ expand_limits( y = 0)+labs(y="Population")+ scale_x_continuous(breaks = c(seq(1940, 2060, by = 10),2065))+scale_fill_gradient(high= COLOR1, low= COLOR2,name ="Likelhood\n(0%-100%)", trans = 'reverse') dev.off() png(paste0(SAVE_RES_LOC_LOW,"Birth_Fan_Chart_Low_Growth_Results.png"), width = 12*SCALE_FACTOR, height = 8*SCALE_FACTOR, units = "in", res = 600) MAKE_GRAPH(RES_LOW,4 ,"")+geom_line(data=HIST %>% filter(!is.na(Births)),aes(x=Year,y=Births),color='black',linewidth=0.75)+ scale_y_continuous(breaks = seq(0, 35000, by = 10))+ expand_limits( y = 0)+labs(y="Births")+ scale_x_continuous(breaks = c(2009,seq(2015, 2065, by = 5)))+scale_fill_gradient(high= COLOR1, low= COLOR2,name ="Likelhood\n(0%-100%)", trans = 'reverse')+theme(legend.position = "none") dev.off() png(paste0(SAVE_RES_LOC_LOW,"Mortality_Fan_Chart_Low_Growth_Results.png"), width = 12*SCALE_FACTOR, height = 8*SCALE_FACTOR, units = "in", res = 600) MAKE_GRAPH(RES_LOW,5 ,"")+geom_line(data=HIST %>% filter(!is.na(Deaths)),aes(x=Year,y=Deaths),color='black',linewidth=0.75)+ scale_y_continuous(breaks = seq(0, 35000, by = 10))+ expand_limits( y = 0)+labs(y="Deaths")+ scale_x_continuous(breaks = c(2009,seq(2015, 2065, by = 5)))+scale_fill_gradient(high= COLOR1, low= COLOR2,name ="Likelhood\n(0%-100%)", trans = 'reverse')+theme(legend.position = "none") dev.off() png(paste0(SAVE_RES_LOC_LOW,"Migration_Fan_Chart_Low_Growth_Results.png"), width = 12*SCALE_FACTOR, height = 8*SCALE_FACTOR, units = "in", res = 600) MAKE_GRAPH(RES_LOW,6 ,"")+geom_line(data=HIST %>% filter(!is.na(Migration)),aes(x=Year,y=Migration),color='black',linewidth=0.75)+ scale_y_continuous(breaks = seq(-1000, 35000, by = 100))+ expand_limits( y = 0)+labs(y="Migration")+ scale_x_continuous(breaks = c(2009,seq(2015, 2065, by = 5)))+scale_fill_gradient(high= COLOR1, low= COLOR2,name ="Likelhood\n(0%-100%)", trans = 'reverse')+theme(legend.position = "none") dev.off() ################################# Key Year Summaries KEY_YEARS_OF_STUDY <- c(2027,2030,2035,2045,2055,2065) CI_BANDS <- do.call(rbind,lapply(KEY_YEARS_OF_STUDY ,function(x){quantile(as.numeric(t((RES%>% filter(Year==x))[,3])),c(0.025,0.975,0.5))})) %>% as_tibble %>% mutate(Year=KEY_YEARS_OF_STUDY) CI_BANDS <- CI_BANDS %>% pivot_longer(!Year,names_to="Percentile",values_to="value") CI_BANDS$Interval <- ifelse(CI_BANDS$Percentile %in% c('2.5%','97.5%'),'95%',NA) CI_BANDS$Interval <- ifelse(CI_BANDS$Percentile %in% c('50%'),'Median',CI_BANDS$Interval) KEY_YEAR_SUMMARY_TBL <- CI_BANDS %>% group_by(Year) %>% summarize(CI_95_Lower=min(value),Median=median(value),CI_95_Upper=max(value)) write_csv(round(KEY_YEAR_SUMMARY_TBL,0),paste0(SAVE_RES_LOC,"Key_Year_Summary_Main_Results.csv")) ######High Results CI_BANDS_HIGH <- do.call(rbind,lapply(KEY_YEARS_OF_STUDY ,function(x){quantile(as.numeric(t((RES_HIGH%>% filter(Year==x))[,3])),c(0.025,0.975,0.5))})) %>% as_tibble %>% mutate(Year=KEY_YEARS_OF_STUDY) CI_BANDS_HIGH <- CI_BANDS_HIGH %>% pivot_longer(!Year,names_to="Percentile",values_to="value") CI_BANDS_HIGH$Interval <- ifelse(CI_BANDS_HIGH$Percentile %in% c('2.5%','97.5%'),'95%',NA) CI_BANDS_HIGH$Interval <- ifelse(CI_BANDS_HIGH$Percentile %in% c('50%'),'Median',CI_BANDS_HIGH$Interval) KEY_YEAR_SUMMARY_TBL_HIGH <- CI_BANDS_HIGH %>% group_by(Year) %>% summarize(CI_95_Lower=min(value),Median=median(value),CI_95_Upper=max(value)) KEY_YEAR_SUMMARY_TBL_HIGH write_csv(round(KEY_YEAR_SUMMARY_TBL_HIGH,0),paste0(SAVE_RES_LOC_HIGH,"Key_Year_Summary_Upper_Bound.csv")) ######Low Results CI_BANDS_LOW <- do.call(rbind,lapply(KEY_YEARS_OF_STUDY ,function(x){quantile(as.numeric(t((RES_LOW%>% filter(Year==x))[,3])),c(0.025,0.975,0.5))})) %>% as_tibble %>% mutate(Year=KEY_YEARS_OF_STUDY) CI_BANDS_LOW <- CI_BANDS_LOW %>% pivot_longer(!Year,names_to="Percentile",values_to="value") CI_BANDS_LOW$Interval <- ifelse(CI_BANDS_LOW$Percentile %in% c('2.5%','97.5%'),'95%',NA) CI_BANDS_LOW$Interval <- ifelse(CI_BANDS_LOW$Percentile %in% c('50%'),'Median',CI_BANDS_LOW$Interval) KEY_YEAR_SUMMARY_TBL_LOW <- CI_BANDS_LOW %>% group_by(Year) %>% summarize(CI_95_Lower=min(value),Median=median(value),CI_95_Upper=max(value)) write_csv(round(KEY_YEAR_SUMMARY_TBL_LOW,0),paste0(SAVE_RES_LOC_LOW,"Key_Year_Summary_Lower_Bound.csv")) ################################# Histograms KEY_YEAR_DATA <- RES %>% filter(Year %in% KEY_YEARS_OF_STUDY ) AVG_VALUES <- KEY_YEAR_DATA %>% group_by(Year) %>% summarize(MED=median(Population),MEAN=mean(Population)) AVG_VALUES <- rbind(AVG_VALUES[,1:2]%>% rename(Value=MED) %>% mutate('Summary Stat.'="Median"),AVG_VALUES[,c(1,3)] %>% rename(Value=MEAN) %>% mutate('Summary Stat.'="Mean")) HISTOGRAM <- ggplot(KEY_YEAR_DATA, aes(x = Population,group=-Year,Color=Year,fill=Year)) + geom_histogram(alpha=0.3,bins=800)+geom_vline(data = AVG_VALUES, aes(xintercept = Value,group=`Summary Stat.`,color = `Summary Stat.`), linewidth= 0.75)+scale_color_manual(values=c("red","black","black"))+ facet_grid(rows=vars(Year))+ scale_x_continuous(breaks = c(seq(0, 10000, by = 500)))+ theme_bw()+ theme(legend.position = "top",panel.grid.minor = element_blank())+ylab("Number of Simulation")+guides(fill= guide_legend(nrow = 1)) png(paste0(SAVE_RES_LOC,"Population_Histogram_Main_Results.png"), width = 8, height = 12, units = "in", res = 600) HISTOGRAM dev.off() ####Upper KEY_YEAR_DATA <- RES_HIGH %>% filter(Year %in% KEY_YEARS_OF_STUDY ) AVG_VALUES <- KEY_YEAR_DATA %>% group_by(Year) %>% summarize(MED=median(Population),MEAN=mean(Population)) AVG_VALUES <- rbind(AVG_VALUES[,1:2]%>% rename(Value=MED) %>% mutate('Summary Stat.'="Median"),AVG_VALUES[,c(1,3)] %>% rename(Value=MEAN) %>% mutate('Summary Stat.'="Mean")) HISTOGRAM <- ggplot(KEY_YEAR_DATA, aes(x = Population,group=-Year,Color=Year,fill=Year)) + geom_histogram(alpha=0.3,bins=800)+geom_vline(data = AVG_VALUES, aes(xintercept = Value,group=`Summary Stat.`,color = `Summary Stat.`), size = 0.75)+scale_fill_gradient(low = "grey", high = "darkgreen")+scale_color_manual(values=c("red","black","black"))+ facet_grid(rows=vars(Year))+ scale_x_continuous(breaks = c(seq(0, 100000, by = 1000)))+ theme_bw()+ theme(legend.position = "top",panel.grid.minor = element_blank())+ylab("Number of Simulation")+guides(fill= guide_legend(nrow = 1)) png(paste0(SAVE_RES_LOC_HIGH,"Population_Histogram_Upper_Bound.png"), width = 8, height = 12, units = "in", res = 600) HISTOGRAM dev.off() ####Lower KEY_YEAR_DATA <- RES_LOW %>% filter(Year %in% KEY_YEARS_OF_STUDY ) AVG_VALUES <- KEY_YEAR_DATA %>% group_by(Year) %>% summarize(MED=median(Population),MEAN=mean(Population)) AVG_VALUES <- rbind(AVG_VALUES[,1:2]%>% rename(Value=MED) %>% mutate('Summary Stat.'="Median"),AVG_VALUES[,c(1,3)] %>% rename(Value=MEAN) %>% mutate('Summary Stat.'="Mean")) HISTOGRAM <- ggplot(KEY_YEAR_DATA, aes(x = Population,group=-Year,Color=Year,fill=Year)) + geom_histogram(alpha=0.3,bins=800)+geom_vline(data = AVG_VALUES, aes(xintercept = Value,group=`Summary Stat.`,color = `Summary Stat.`), size = 0.75)+scale_fill_gradient(low = "grey", high = "darkred")+scale_color_manual(values=c("red","black","black"))+ facet_grid(rows=vars(Year))+ scale_x_continuous(breaks = c(seq(0, 10000, by = 500)))+ theme_bw()+ theme(legend.position = "top",panel.grid.minor = element_blank())+ylab("Number of Simulation")+guides(fill= guide_legend(nrow = 1)) png(paste0(SAVE_RES_LOC_LOW,"Population_Histogram_Lower_Bound.png"), width = 8, height = 12, units = "in", res = 600) HISTOGRAM dev.off() ############################Capacity Tables MAKE_GT <- function(DATA,POP_LEVELS=seq(2000,6000,100)){ YEARS <- c(2027,2030,2035,2045,2055,2065) if(exists("KEY_YEARS")){rm(KEY_YEARS)} for(i in YEARS ){ KEY <- DATA%>% filter(Year==i ) %>% pull(Population) ECDF <- ecdf(KEY) ECDF_VALUES <- ECDF(POP_LEVELS) if(!exists("KEY_YEARS")){KEY_YEARS<- ECDF_VALUES} else{KEY_YEARS<- cbind(KEY_YEARS,ECDF_VALUES)} } colnames(KEY_YEARS) <- YEARS rownames(KEY_YEARS) <- POP_LEVELS PLOT_GREEN <- "forestgreen" PLOT_YELLOW <- "yellow" PLOT_RED <- "red" KEY_YEARS <- KEY_YEARS%>% as.data.frame Capacity_Risk <- KEY_YEARS%>% gt(rownames_to_stub = TRUE,caption="Year") %>% data_color( fn = scales::col_numeric( palette = c(PLOT_RED, PLOT_YELLOW, PLOT_GREEN), domain = c(0, 1) ) ) %>% fmt_percent( decimals = 1, drop_trailing_zeros = FALSE) %>% tab_stubhead(label =c("Capacity")) return(Capacity_Risk) } TBL_MAIN <- MAKE_GT(RES) TBL_HIGH <- MAKE_GT(RES_HIGH) TBL_LOW <- MAKE_GT(RES_LOW) gtsave( data = TBL_MAIN, filename = "./Results/Primary_Simulation_Results/Main_Results/Capacity_Table_Main_Results.html") gtsave( data = TBL_HIGH, filename = "./Results/Primary_Simulation_Results/Upper_Bound_Results/Capacity_Table_Upper_Bound.html") gtsave( data = TBL_LOW, filename = "./Results/Primary_Simulation_Results/Lower_Bound_Results/Capacity_Table_Lower_Bound.html") system("wkhtmltopdf --disable-smart-shrinking --no-stop-slow-scripts --enable-local-file-access --page-width 99mm --page-height 328mm ./Results/Primary_Simulation_Results/Main_Results/Capacity_Table_Main_Results.html ./Results/Primary_Simulation_Results/Main_Results/Capacity_Table_Main_Results.pdf") system("wkhtmltopdf --disable-smart-shrinking --no-stop-slow-scripts --enable-local-file-access --page-width 101mm --page-height 331mm ./Results/Primary_Simulation_Results/Lower_Bound_Results/Capacity_Table_Lower_Bound.html ./Results/Primary_Simulation_Results/Lower_Bound_Results/Capacity_Table_Lower_Bound.pdf") system("wkhtmltopdf --disable-smart-shrinking --no-stop-slow-scripts --enable-local-file-access --page-width 96mm --page-height 328mm ./Results/Primary_Simulation_Results/Upper_Bound_Results/Capacity_Table_Upper_Bound.html ./Results/Primary_Simulation_Results/Upper_Bound_Results/Capacity_Table_Upper_Bound.pdf")