library(rvest) #Data found on the page http://eadiv.state.wy.us/pop/ PAGE <- read_html("http://eadiv.state.wy.us/pop/BirthDeathMig.htm") NODE <- html_element(PAGE ,"table") TBL <- html_table(NODE) ST <- which(toupper(TBL$X1)=="ALBANY") END <- which(toupper(TBL$X1)=="TOTAL") TYPES <- TBL[ST-2,1] ST_YEAR <- 1971 ALL_DATA <- list() TBL <- TBL[,c(1,which(!is.na(as.numeric(TBL[ST[1],]))))] TBL <- TBL[,-ncol(TBL)] colnames(TBL) <- c("County",(ST_YEAR:(ST_YEAR+ncol(TBL)-1))) TBL$Type <- NA for(i in 1:length(ST)){ TBL[ST[i]:END[i],"Type"]<- as.character(TYPES[i,1]) } TBL[ST[2]:END[2],"Type"] <- as.character(TYPES[2,1]) TBL$Type TBL <- TBL %>% filter(!is.na(Type)) %>% select(County,Type,everything()) GROUP <- colnames(TBL)[-1:-2] Data <- pivot_longer(TBL,all_of(GROUP),names_to="Year",values_to="Pop_Change") Data$County <- ifelse(toupper(Data$County)=="TOTAL","Wyoming",Data$County) WY_COUNTY_DATA_SET <- pivot_wider(Data,names_from=Type,values_from=Pop_Change) colnames(Data)[5] <-"Migration"