library(tidyverse) ###Process the simulations and save the main percentile results by year RES <- read_csv("Results/Simulations/Kemmerer_2024_Simulation.csv") RES[,"Year"] <- RES[,"Year"] RES<- RES %>% filter(!is.na(Year)) RES <- RES %>% filter(!is.na(Population)) HIST <- readRDS("Data/Cleaned_Data/Population_Data/RDS/Kemmerer_Diamondville_Population_Data.Rds") %>% filter(County=='Lincoln') %>% mutate(Percentile="Actual Population") %>% filter(Year>=1940) ######Population ####Fan New GET_DATA <- function(RES,COL_NUM){ YEARS <- min(RES$Year,na.rm=TRUE):max(RES$Year,na.rm=TRUE) FAN_DATA <- do.call(rbind,lapply(YEARS,function(x){quantile(as.numeric(t((RES %>% filter(Year==x))[,COL_NUM])),seq(0.01,0.99,by=0.01))})) %>% as_tibble %>% mutate(Year=YEARS) FAN_DATA <- rbind(FAN_DATA[1,],FAN_DATA) START_VALUE <- (HIST %>% filter(Year==2024))[,COL_NUM+1] %>% as.numeric FAN_DATA <- FAN_DATA %>% pivot_longer(colnames(FAN_DATA %>% select(-Year)),names_to="Percentile") %>% filter(Year>2024) %>% unique NUM_YEARS <- length(unique(FAN_DATA$Year) ) FAN_DATA$Group <- rep(c(1:49,0,rev(1:49)),NUM_YEARS) FAN_DATA <- FAN_DATA %>% group_by(Year,Group) %>% summarize(MIN=min(value),MAX=max(value)) TEMP <- FAN_DATA %>% filter(Year==2025) %>% mutate(Year=2024) %>% ungroup TEMP[,3:4] <- START_VALUE FAN_DATA <- rbind(TEMP,FAN_DATA %>% ungroup) %>% as_tibble return(FAN_DATA) } RES %>% pull(Sim_UUID) %>% unique %>% length() MAKE_GRAPH <- function(GRAPH_DATA,ALPHA=0.03,COLOR='cadetblue',LINE_WIDTH=1){ PLOT <- ggplot(data=GRAPH_DATA) for(i in 1:49){ C_DATA <- GRAPH_DATA%>% filter(Group==i) PLOT <- PLOT +geom_ribbon(data=C_DATA,aes(x=Year,ymin=MIN,ymax=MAX),alpha=ALPHA,fill=COLOR) } CI_90 <- rbind(GRAPH_DATA%>% filter(Group==20) %>% mutate(Interval='80%'),GRAPH_DATA%>% filter(Group==5) %>% mutate(Interval='95%'),GRAPH_DATA%>% filter(Group==0) %>% mutate(Interval='Median Prediction')) PLOT <- PLOT+geom_line(aes(x=Year,y=MIN,linetype=Interval,color=Interval),linewidth=LINE_WIDTH, data=CI_90)+geom_line(aes(x=Year,y=MAX,group=Interval,linetype=Interval,color=Interval),linewidth=LINE_WIDTH ,data=CI_90)+scale_color_manual(values=c("grey50","grey80","black"))+scale_linetype_manual(values = c("solid","solid","dotdash")) return(PLOT) } POP_DATA <- GET_DATA(RES,3) POP_PLOT <- MAKE_GRAPH(POP_DATA) POP_PLOT <- POP_PLOT+geom_line(data=HIST,aes(x=Year,y=Population),color='black',linewidth=0.75)+ scale_x_continuous(breaks = c(seq(1940, 2060, by = 10),2065))+ scale_y_continuous(breaks = seq(0, 35000, by = 500))+ggtitle("Kemmerer & Diamondville, Population Forecast")+ expand_limits( y = 0)+labs(color = "Prediction Interval",linetype="Prediction Interval",y="Population")+ theme_bw()+ theme(legend.position = "top",panel.grid.minor = element_blank()) POP_PLOT BIRTH_DATA <- GET_DATA(RES,4) BIRTH_PLOT <- MAKE_GRAPH(BIRTH_DATA) BIRTH_PLOT <- BIRTH_PLOT+geom_line(data=HIST,aes(x=Year,y=Births),color='black',linewidth=0.75)+ scale_x_continuous(breaks = c(seq(2010, 2060, by = 10),2065),limits=c(2009,2065))+ scale_y_continuous(breaks = seq(0, 35000, by = 10))+ggtitle("Kemmerer & Diamondville, Birth Forecast")+ expand_limits( y = 0)+labs(color = "Prediction Interval",linetype="Prediction Interval",y="Births")+ theme_bw()+ theme(legend.position = "top",panel.grid.minor = element_blank()) BIRTH_PLOT DEATH_DATA <- GET_DATA(RES,5) %>% filter(!is.na(MIN)) DEATH_PLOT <- MAKE_GRAPH(DEATH_DATA) DEATH_PLOT <- DEATH_PLOT+geom_line(data=HIST,aes(x=Year,y=Deaths),color='black',linewidth=0.75)+ scale_x_continuous(breaks = c(seq(2010, 2060, by = 10),2065),limits=c(2009,2065))+ scale_y_continuous(breaks = seq(0, 35000, by = 10))+ggtitle("Kemmerer & Diamondville, Mortality Forecast")+ expand_limits( y = 0)+labs(color = "Prediction Interval",linetype="Prediction Interval",y="Deaths")+ theme_bw()+ theme(legend.position = "top",panel.grid.minor = element_blank()) DEATH_PLOT MIGRATION_DATA <- GET_DATA(RES,6) %>% filter(!is.na(MIN)) MIGRATION_PLOT <- MAKE_GRAPH(MIGRATION_DATA) MIGRATION_PLOT <- MIGRATION_PLOT+geom_line(data=HIST,aes(x=Year,y=Migration),color='black',linewidth=0.75)+ scale_x_continuous(breaks = c(seq(2010, 2060, by = 10),2065),limits=c(2009,2065))+ scale_y_continuous(breaks = seq(-1000, 1000, by = 50))+ggtitle("Kemmerer & Diamondville, Net Migration Forecast")+ expand_limits( y = 0)+labs(color = "Prediction Interval",linetype="Prediction Interval",y="Migration")+ theme_bw()+ theme(legend.position = "top",panel.grid.minor = element_blank()) MIGRATION_PLOT