#####Packages library(tidyverse) #Cleaning data library(fixest) #Estimating a model of birth rates, to provide variance in the birth rate Monte Carlo using a fixed effect model. library(forecast) #Fore ARIMA migration simulations library(parallel) library(uuid) #To add a index to each batch ####If the preliminary data needs to be reloaded run the supplied bash script to download, process, and generate all needed data sets for the Monte Carlo population Simulation. Otherwise skip this step to save time RELOAD_DATA <- FALSE if(RELOAD_DATA){system("bash Prelim_Process.sh")} #Load custom functions needed for the simulation source("Scripts/Load_Custom_Functions/Migration_Simulation_Functions.r") source("Scripts/Load_Custom_Functions/Birth_Simulation_Functions.r") source("Scripts/Load_Custom_Functions/Increment_Data_Year.r") source("Scripts/Load_Custom_Functions/Single_Age_Mortality_Trend_Simulation.r") source("Scripts/Load_Custom_Functions/Induced_Migration_Functions.r") #######Preliminary Model Inputs YEARS_AHEAD <- 41 ST_YEAR <- 2025 ################################Load Data DEMO <- readRDS("Data/Intermediate_Inputs/Starting_Demographic_Data_Sets_of_Monte_Carlo/2024_Starting_Kemmerer_Diamondville_Demographics_Matrix.Rds") BIRTH_MOD <- readRDS("Data/Intermediate_Inputs/Birth_Regressions/Birth_Regression.Rds") #Must add region as a factor with multiple levels for predict to work. Seems to check for multiple levels although that is not needed econometrics. BIRTH_DATA <- readRDS("Data/Intermediate_Inputs/Birth_Regressions/Regression_Data/Birth_Simulation_Key_Starting_Points.Rds") %>% mutate(Region=factor(Region)) %>% filter(KEM==1,Year==2023) %>% mutate(Year=2024) MIGRATION_ARIMA <- readRDS("Data/Intermediate_Inputs/Migration_ARIMA_Models/Kemmerer_Diamondville_Net_Migration_ARIMA.Rds") MIGRATION_ODDS <- readRDS("Data/Intermediate_Inputs/Migration_Trends/Migration_Age_Probability_Zero_to_85.Rds") #### OPERATORS <- readRDS("Data/Cleaned_Data/TerraPower_Impact/Operating_Worker_Related_Migration.Rds") CONSTRUCTION <- readRDS("Data/Cleaned_Data/TerraPower_Impact/Construction_Related_Migration.Rds") OPERATOR_LIN_MIGRATION <- OPERATORS %>% pull("Operator_Emp_Migrated") CONSTRUCTION_LIN_MIGRATION <- CONSTRUCTION %>% pull("Construction_Emp_Migrated") INDUCED_MIGRATION_MULTIPLIERS <- readRDS("Data/Cleaned_Data/TerraPower_Impact/Induced_Jobs.Rds") ############## #Data for death rate trends SINGLE_AGE_MODS <- readRDS("Data/Intermediate_Inputs/Mortality_Regression_Data/Single_Sex_Age_Time_Series_Regression.Rds") BOUNDS <- readRDS("Data/Intermediate_Inputs/Mortality_Regression_Data/Single_Sex_Age_Bounds_for_Predictions.Rds") MAX_MALE <- BOUNDS %>% filter(Sex=='Male') %>% pull(MAX_RATE) MIN_MALE <- BOUNDS %>% filter(Sex=='Male') %>% pull(MIN_RATE) MAX_FEMALE <- BOUNDS %>% filter(Sex=='Female') %>% pull(MAX_RATE) MIN_FEMALE <- BOUNDS %>% filter(Sex=='Female') %>% pull(MIN_RATE) MIN_GAP <- BOUNDS %>% filter(Sex=='Male') %>% pull(MIN_MALE_FEMALE_GAP) MAX_GAP <- BOUNDS %>% filter(Sex=='Male') %>% pull(MAX_MALE_FEMALE_GAP) BASELINE_AGE_ADJUST_MEN <- readRDS("Data/Cleaned_Data/Mortality_Data/RDS/Single_Sex_Age_Population_in_2000.Rds") %>% filter(Sex=='Male') %>% pull(Percent_of_Population) BASELINE_AGE_ADJUST_WOMEN <- readRDS("Data/Cleaned_Data/Mortality_Data/RDS/Single_Sex_Age_Population_in_2000.Rds") %>% filter(Sex=='Female') %>% pull(Percent_of_Population) #Adjust to just women popualtion (Not all population percent BASELINE_AGE_ADJUST_WOMEN <- BASELINE_AGE_ADJUST_WOMEN/sum(BASELINE_AGE_ADJUST_WOMEN ) BASELINE_AGE_ADJUST_MEN <- BASELINE_AGE_ADJUST_MEN/ sum(BASELINE_AGE_ADJUST_MEN ) MOD_MEN_ALL <- readRDS("Data/Intermediate_Inputs/Age_Mortality_ARIMA_Models/ARIMA_US_Men_Mortality_by_Age.Rds") MOD_WOMEN_ALL <- readRDS("Data/Intermediate_Inputs/Age_Mortality_ARIMA_Models/ARIMA_US_Women_Mortality_by_Age.Rds") MOD_LIN_MEN <- readRDS("Data/Intermediate_Inputs/Age_Mortality_ARIMA_Models/ARIMA_Lincoln_Men_Mortality_by_Age.Rds") MOD_LIN_WOMEN <- readRDS("Data/Intermediate_Inputs/Age_Mortality_ARIMA_Models/ARIMA_Lincoln_Women_Mortality_by_Age.Rds") XREG <- cbind(rep(0.0001,YEARS_AHEAD+1),rep(0.0001,YEARS_AHEAD+1)) #Empty data set to simulate in the future XREG <- ts(XREG,start=ST_YEAR,frequency=1) SIMULATE_MORTALITY_RATE_TRENDS <- function(){ SIMULATED_MORTALITY_DATA_SET <- MAKE_EMPTY(ST_YEAR,ST_YEAR+YEARS_AHEAD,MOD_LIN_MEN,MOD_LIN_WOMEN,MOD_MEN_ALL,MOD_WOMEN_ALL,XREG) MORTALITY_SIMULATION <- AGE_DIST(SINGLE_AGE_MODS,SIMULATED_MORTALITY_DATA_SET ,MAX_MALE,MAX_FEMALE,MIN_MALE,MIN_FEMALE,MAX_GAP,MIN_GAP,BASELINE_AGE_ADJUST_MEN,BASELINE_AGE_ADJUST_WOMEN) return(MORTALITY_SIMULATION ) } #####################START YEAR BY SIMULATIONS #CURRENT_YEARS_AHEAD=1;CURRENT_SIM_NUM <- 1;MORTALITY_SIMULATION <- SIMULATE_MORTALITY_RATE_TRENDS() SINGLE_YEAR_SIM <- function(DEMO,BIRTH_DATA,CURRENT_YEARS_AHEAD,MORTALITY_SIMULATION,NET_MIGRATION){ ORIG_DEMO <- DEMO DEMO <- DEMOGRAPHICS_AFTER_MIGRATION(DEMO, NET_MIGRATION,MIGRATION_ODDS ) TOTAL_MIGRATION <- sum(DEMO-ORIG_DEMO) BIRTH_DATA$Year <- BIRTH_DATA$Year+1 BIRTH_DATA$Lag_Two_Births <- BIRTH_DATA$Lag_Births BIRTH_DATA$Lag_Births <- BIRTH_DATA$Births BIRTH_DATA$Births <- NA ##We grab one year earlier than the window because they are one year older this year. Because the ages are from 0-85, row 18 is year 17, but one year is added making it 18 years in the current year. The birth windows are 18-28 for women and 18-30 for men. BIRTH_DATA$Min_Birth_Group <- min(sum(DEMO[18:30,1]),sum(DEMO[18:28,2])) NEW_BORNS <- BIRTH_SIM(BIRTH_MOD,BIRTH_DATA) TOTAL_BIRTHS <- sum(NEW_BORNS) BIRTH_DATA[,"Births"] <- TOTAL_BIRTHS DEMO <- INCREMENT_AGES(DEMO,NEW_BORNS) MORTALITY_SIMULATION MALE_DEATHS <- sapply(1:86,function(x){rbinom(1,DEMO[x,1],MORTALITY_SIMULATION[[1]][x,CURRENT_YEARS_AHEAD])}) FEMALE_DEATHS <- sapply(1:86,function(x){rbinom(1,DEMO[x,2],MORTALITY_SIMULATION[[2]][x,CURRENT_YEARS_AHEAD])}) MALE_DEATHS <- ifelse(MALE_DEATHS>=DEMO[,1],DEMO[,1],MALE_DEATHS) FEMALE_DEATHS <- ifelse(FEMALE_DEATHS>=DEMO[,1],DEMO[,1],FEMALE_DEATHS) TOTAL_DEATHS <- sum(MALE_DEATHS+FEMALE_DEATHS) DEMO[,"Num_Male"] <- DEMO[,"Num_Male"] -MALE_DEATHS DEMO[,"Num_Female"] <- DEMO[,"Num_Female"] -FEMALE_DEATHS #List of values needed for the next run or for reporting a result TOTAL_POP <- sum(DEMO) return(list(DEMO,BIRTH_DATA,c(TOTAL_POP,TOTAL_BIRTHS,TOTAL_DEATHS,TOTAL_MIGRATION))) } MIGRATION_ARIMA_MODEL <- MIGRATION_ARIMA #DEMO,BIRTH_DATA,ST_YEAR,YEARS_AHEAD,MIGRATION_ARIMA_MODEL,OPERATOR_TOTAL,CONSTRUCTION_TOTAL,MIGRATION_MULTIPLIERS CONSTRUCTION_MIGRATION <- CONSTRUCTION_LIN_MIGRATION MIGRATION_MULTIPLIERS <- INDUCED_MIGRATION_MULTIPLIERS OPERATOR_MIGRATION <- OPERATOR_LIN_MIGRATION SINGLE_SIM <- function(DEMO,BIRTH_DATA,ST_YEAR,YEARS_AHEAD,MIGRATION_ARIMA_MODEL,OPERATOR_MIGRATION,CONSTRUCTION_MIGRATION,MIGRATION_MULTIPLIERS ){ TERRA_POWER_EFFECT <- rep(0,YEARS_AHEAD) OTHER_PROJECT_EFFECTS_PERM <- rep(0,YEARS_AHEAD) OTHER_PROJECT_EFFECTS_TEMP <- rep(0,YEARS_AHEAD) OTHER_PROJECT_EFFECTS_TEMP_POP_ADDED <- rep(0,YEARS_AHEAD) OPERATOR_MIGRATION <- LOCAL_WORK_ADJ(OPERATOR_MIGRATION ,0.85) #Assume between 85%-100% operators live in Kemmerer CONSTRUCTION_MIGRATION <- LOCAL_WORK_ADJ(CONSTRUCTION_MIGRATION,0.41) #Assume between 41%-100% operators live in Kemmerer CONSTRUCTION_MIGRATION[7] <- CONSTRUCTION_MIGRATION[7] - sum(CONSTRUCTION_MIGRATION ) CONSTRUCTION_POPULATION_ADDED <- cumsum(CONSTRUCTION_MIGRATION) ADDED_FROM_BASELINE <- runif(1) #The percentage of the possible growth in industries like restaurants to add compared to the Kemmerer IMPLAN model which understates possible structural growth PERMANENT_TERRAPOWER_MIGRATION <- INDUCED_SIMULATION(CONSTRUCTION_MIGRATION,OPERATOR_MIGRATION,MIGRATION_MULTIPLIERS,ADDED_FROM_BASELINE)+OPERATOR_MIGRATION ###############NOTE NEED TO USE THIS AT END TO ADJUST THE RESULTS WHILE LEAVING THE DEMOGRAPHIC MATRIX TERRA_POWER_EFFECT[1:7] <- TERRA_POWER_EFFECT[1:7]+CONSTRUCTION_MIGRATION #Dry Pine Migration DRY_PINE <- round(runif(1,0.15,0.45)*c(126,176,-302)*1.15) DRY_PINE[3] <- DRY_PINE[3]-sum(DRY_PINE) OTHER_PROJECT_EFFECTS_TEMP[2:4] <- DRY_PINE OTHER_PROJECT_EFFECTS_TEMP_POP_ADDED[2:4] <- cumsum(DRY_PINE) #Data Center Simulation if(runif(1)>0.67){ MW_CAPACITY <- runif(1,20,120) PERM_WORKERS <- MW_CAPACITY/8+30 #Seems to be a good ration 32.5 workers at 20 capacity and 45 at max this is a heurstic I came up with OTHER_PROJECT_EFFECTS_PERM DATA_CENTER_START_YEAR <- which.max(runif(YEARS_AHEAD-6))+3 PERM_DATA_CENTER_OP <- PERM_WORKERS*(1+(2.515334+19.52286*ADDED_FROM_BASELINE)/40) #Add induced #Estimate construction workers on data center AVG_CONST_COST_PER_MW <- (10.4+13.2)/2 RELATIVE_COST_DRAW <- runif(1,10.4*0.75,13.2*1.25)/AVG_CONST_COST_PER_MW #Draw from the range of reported construction costs per MW of capacity in Cheyene. See "DATA CENTER DEVELOPMENT COST GUIDE" PERCENT_IN_KEMMERER <- runif(1,0.41,1) #What percent of the in migration will live in Kemmerer vs other areas. Taken from TerraPower assumptions POP_PER_YEAR <- (1.15*46.02*MW_CAPACITY)/3 #MW capacity ranges from 18 to 120 based on historic Sabre projects. IMPLAN estimates 46.02 total jobs, per MW of capacity (using average cost per MWh). 1.15 accounts for 5% of workers bringing families TEMP_DATA_MIGRATION <- round(PERCENT_IN_KEMMERER*RELATIVE_COST_DRAW*(POP_PER_YEAR)) OTHER_PROJECT_EFFECTS_TEMP[DATA_CENTER_START_YEAR+3] <- OTHER_PROJECT_EFFECTS_TEMP[DATA_CENTER_START_YEAR+3]+TEMP_DATA_MIGRATION #Enter OTHER_PROJECT_EFFECTS_TEMP[DATA_CENTER_START_YEAR+6] <- OTHER_PROJECT_EFFECTS_TEMP[DATA_CENTER_START_YEAR+6]-TEMP_DATA_MIGRATION #Leave OTHER_PROJECT_EFFECTS_TEMP_POP_ADDED[(DATA_CENTER_START_YEAR+3):(DATA_CENTER_START_YEAR+5)]<- OTHER_PROJECT_EFFECTS_TEMP_POP_ADDED[(DATA_CENTER_START_YEAR+3):(DATA_CENTER_START_YEAR+5)]+TEMP_DATA_MIGRATION OTHER_PROJECT_EFFECTS_PERM[DATA_CENTER_START_YEAR+6] <- OTHER_PROJECT_EFFECTS_PERM[DATA_CENTER_START_YEAR+3]+PERM_DATA_CENTER_OP } MIGRATION_SIM_VALUES <- round(as.vector(simulate(nsim=YEARS_AHEAD,MIGRATION_ARIMA_MODEL))+TERRA_POWER_EFFECT+OTHER_PROJECT_EFFECTS_PERM) #The runif applies a downshift ranging from the historic decline rate all the way to the Lincoln rate applied in the model FINAL_REPORT_VALUES <- matrix(NA,ncol=6,nrow=YEARS_AHEAD) colnames(FINAL_REPORT_VALUES ) <- c("Sim_UUID","Year","Population","Births","Deaths","Net_Migration") FINAL_REPORT_VALUES[,1] <- UUIDgenerate() for(i in 1:YEARS_AHEAD){ C_YEAR <- ST_YEAR+i-1 C_RES <-SINGLE_YEAR_SIM(DEMO,BIRTH_DATA,i,SIMULATE_MORTALITY_RATE_TRENDS(),MIGRATION_SIM_VALUES[i]) DEMO <- C_RES[[1]] BIRTH_DATA <- C_RES[[2]] FINAL_REPORT_VALUES[i,-1] <- c(C_YEAR,C_RES[[3]]) } FINAL_REPORT_VALUES[1:7,3] <- as.numeric(FINAL_REPORT_VALUES[1:7,3])+CONSTRUCTION_POPULATION_ADDED FINAL_REPORT_VALUES[1:7,6] <- as.numeric(FINAL_REPORT_VALUES[1:7,6]) +CONSTRUCTION_MIGRATION FINAL_REPORT_VALUES[,6] <- as.numeric(FINAL_REPORT_VALUES[,6]) +OTHER_PROJECT_EFFECTS_TEMP[1:nrow(FINAL_REPORT_VALUES)] FINAL_REPORT_VALUES[,3] <- as.numeric(FINAL_REPORT_VALUES[,3]) +OTHER_PROJECT_EFFECTS_TEMP_POP_ADDED[1:nrow(FINAL_REPORT_VALUES)] return(FINAL_REPORT_VALUES) } if(!exists("RES_DIR")){RES_DIR<- "./Results/"} if(!exists("RES_SIM_DIR")){RES_SIM_DIR <- paste0(RES_DIR,"Simulations/")} dir.create(RES_SIM_DIR, recursive = TRUE, showWarnings = FALSE) NCORES <- detectCores()-1 BATCH_SIZE <- NCORES*10 TOTAL_SIMULATIONS <- 10^6 N_RUNS <-ceiling(TOTAL_SIMULATIONS/BATCH_SIZE ) SIM_RES_FILE <- paste0(RES_SIM_DIR,"Kemmerer_2024_Upper_Bound_With_Data_Center_Simulation.csv") NEW_RES_FILE <- !file.exists(SIM_RES_FILE) OPERATOR_LIN_MIGRATION <- OPERATORS %>% pull("Operator_Emp_Migrated") CONSTRUCTION_LIN_MIGRATION <- CONSTRUCTION %>% pull("Construction_Emp_Migrated") for(i in 1:N_RUNS){ # MIGRATION_MATRIX <- simulate(nsim=BATCH_SIZE,MIGRATION_ARIMA,n=YEARS_AHEAD) MIGRATION_MATRIX <- do.call(cbind, mclapply(1:BATCH_SIZE,function(x)(as.vector(simulate(nsim=YEARS_AHEAD,MIGRATION_ARIMA) )),mc.cores = detectCores()-1)) # rownames(MIGRATION_MATRIX) <- ST_YEAR:(ST_YEAR+YEARS_AHEAD-1) # colnames(MIGRATION_MATRIX) <- 1:BATCH_SIZE #SINGLE_SIM(DEMO,BIRTH_DATA,ST_YEAR,YEARS_AHEAD,MIGRATION_ARIMA,OPERATOR_LIN_MIGRATION,CONSTRUCTION_LIN_MIGRATION,INDUCED_MIGRATION_MULTIPLIERS) try(RES <- do.call(rbind,mclapply(1:BATCH_SIZE,function(x){SINGLE_SIM(DEMO,BIRTH_DATA,ST_YEAR,YEARS_AHEAD,MIGRATION_ARIMA,OPERATOR_LIN_MIGRATION,CONSTRUCTION_LIN_MIGRATION,INDUCED_MIGRATION_MULTIPLIERS)},mc.cores=NCORES))) if(exists("RES")){ RES <- as.data.frame(RES) RES[,-1] <- as.numeric(as.matrix(RES[,-1])) if(NEW_RES_FILE & i==1){write_csv(RES,SIM_RES_FILE)}else {write_csv(RES,SIM_RES_FILE,col_names=FALSE,append=TRUE)} rm(RES) } }