library(tidyverse) library(forecast) source("Scripts/Functions.r") #source("Scripts/Load_Wyoming_Web_Data.r") DF <- FRED_GET('WYLINC3POP','LN_POP') %>% select(-YEAR) TS <- 1000*ts(DF,start=c(1970),end=c(2024),frequency=1) BC <- BoxCox.lambda(TS) MODEL <- auto.arima(TS, lambda = BC) forecast(MODEL,h=20) plot(forecast(MODEL,h=35),main="Lincoln County Population Forecast") ####Employment to pop ratio EMP <- FRED_GET('LAUCN560230000000005','EMP') %>% inner_join(FRED_GET('WYLINC3POP','LN_POP')) %>% mutate(LN_POP=1000*LN_POP) EMP <- EMP %>% mutate(RATIO=LN_POP/EMP) ggplot(aes(x=YEAR,y=RATIO),data=EMP)+geom_line() AVG_POP_RATIO <- mean(EMP$RATIO) SD_POP_RATIO <- sd(EMP$RATIO) #####Plan and ideas #1) Review IMPLAN for industry multipliers #2) Review IMPLAN for employment to population multipliers (imparted) #3) Find a list of all planned new projects #4) Use the IMPLAN multipliers for each sector to estimate total change #5) Develop survey to estimate likelihood of new projects #6) Compare to the ARMA percentile #7) Adjust the ARMA up assuming some of these outputs are known. #8) Occupancy rate from IMPLAN as a housing cap when projecting #9) Model housing construciton rate (Maybe) #10) Employment rate by age in IMPLAN ####Other ideas, develop larger plan? Maybe look at decline in other industries as a proportion of employment ###Seperate out Kemmer and Diamondville? http://eadiv.state.wy.us/pop/wyc&sc40.htm