library(rvest) library(tidyverse) ########County, Death, Birth and Migration Data #Data found on the page http://eadiv.state.wy.us/pop/ PAGE <- read_html("http://eadiv.state.wy.us/pop/BirthDeathMig.htm") NODE <- html_element(PAGE ,"table") TBL <- html_table(NODE) ST <- which(toupper(TBL$X1)=="ALBANY") END <- which(toupper(TBL$X1)=="TOTAL") TYPES <- TBL[ST-2,1] ST_YEAR <- 1971 ALL_DATA <- list() TBL <- TBL[,c(1,which(!is.na(as.numeric(TBL[ST[1],]))))] TBL <- TBL[,-ncol(TBL)] colnames(TBL) <- c("County",(ST_YEAR:(ST_YEAR+ncol(TBL)-1))) TBL$Type <- NA for(i in 1:length(ST)){ TBL[ST[i]:END[i],"Type"]<- as.character(TYPES[i,1]) } TBL[ST[2]:END[2],"Type"] <- as.character(TYPES[2,1]) TBL$Type TBL <- TBL %>% filter(!is.na(Type)) %>% select(County,Type,everything()) GROUP <- colnames(TBL)[-1:-2] Data <- pivot_longer(TBL,all_of(GROUP),names_to="Year",values_to="Pop_Change") Data$County <- ifelse(toupper(Data$County)=="TOTAL","Wyoming",Data$County) WY_COUNTY_DATA_SET <- pivot_wider(Data,names_from=Type,values_from=Pop_Change) %>% rename("Migration"=`Net Migration`) %>% mutate(Year=as.integer(Year),Births=parse_number(Births),Deaths=parse_number(Deaths),Migration=parse_number(Migration)) ########################City and County Population Data 2020 to 2024 PAGE <- read_html('http://eadiv.state.wy.us/pop/Place-24EST.htm') NODE <- html_element(PAGE ,"table") TBL <- html_table(NODE) ST <- which(toupper(TBL$X1)==toupper("Albany County")) END <- which(toupper(TBL$X1)==toupper("Balance of Weston County")) #More years than are pulled are listed to make more generic COLUMNS <- c(1,which(TBL[ST-2,] %in% 1970:2025)) NAMES <- TBL[4,COLUMNS][-1] TBL <- TBL[ST:END,COLUMNS ] colnames(TBL) <- c("County",NAMES) TBL <- pivot_longer(TBL,all_of(colnames(TBL)[-1]),names_to="Year",values_to="Population") %>% mutate(Year=as.integer(Year),Population=parse_number(Population)) TBL$County <- gsub(" "," ",gsub("\n","",gsub("\r","",TBL %>% pull(County)))) COUNTY_POP<- TBL[grep("COUNTY",TBL %>% pull(County),ignore.case=TRUE),] COUNTY_POP<- COUNTY_POP[grep("Balance",COUNTY_POP%>% pull(County),invert=TRUE,ignore.case=TRUE),] COUNTY_POP$County <- gsub(" ","_",gsub(" County","",COUNTY_POP$County)) CITY_POP <- TBL[sort(c(grep("County",TBL %>% pull(County),invert=TRUE,ignore.case=TRUE),grep("Balance",TBL %>% pull(County),ignore.case=TRUE))),] CITY_POP$County <- gsub(" ","_",gsub("Balance of","Unincorporated",gsub(" County","",gsub(" city","",gsub(" town","",CITY_POP$County,ignore.case=TRUE),ignore.case=TRUE),ignore.case=TRUE),ignore.case=TRUE)) CITY_POP <- CITY_POP %>% rename("City"=County) ########################City Population Data 2010 to 2020 PAGE <- read_html('http://eadiv.state.wy.us/pop/sub-est11-19.htm') NODE <- html_element(PAGE ,"table") TBL <- html_table(NODE) ST <- which(toupper(TBL$X1)==toupper("Afton town, Wyoming")) END <- which(toupper(TBL$X1)==toupper("Yoder town, Wyoming")) #More years than are pulled are listed to make more generic COLUMNS <- c(1,which(TBL[ST-1,] %in% 1970:2025)) NAMES <- TBL[3,COLUMNS][-1] TBL <- TBL[ST:END,COLUMNS ] colnames(TBL) <- c("City",NAMES) TBL <- pivot_longer(TBL,all_of(colnames(TBL)[-1]),names_to="Year",values_to="Population") %>% mutate(Year=as.integer(Year),Population=parse_number(Population)) TBL$City <- gsub(" ","_",gsub(" $","",gsub("\r|\n| Wyoming|,| town| city","",TBL$City,ignore.case=TRUE))) CITY_POP <- rbind(TBL,CITY_POP) ########################County Population Data 2010 to 2020 PAGE <- read_html('http://eadiv.state.wy.us/pop/ctyest11-19.htm') NODE <- html_element(PAGE ,"table") TBL <- html_table(NODE) ST <- grep("Albany",TBL$X1) END <- grep("Weston",TBL$X1) #More years than are pulled are listed to make more generic COLUMNS <- c(1,which(TBL[ST-2,] %in% 1970:2025)) NAMES <- TBL[3,COLUMNS][-1] TBL <- TBL[ST:END,COLUMNS ] colnames(TBL) <- c("County",NAMES) TBL <- pivot_longer(TBL,all_of(colnames(TBL)[-1]),names_to="Year",values_to="Population") %>% mutate(Year=as.integer(Year),Population=parse_number(Population)) TBL$County <- gsub(" ","_",gsub(" "," ",gsub(" $","",gsub("\r|\n| Wyoming|,| town| city| County|\\.","",TBL$County,ignore.case=TRUE)))) COUNTY_POP <- rbind(TBL,COUNTY_POP) ########################County and City Population Data 2000 to 2010 PAGE <- read_html('http://eadiv.state.wy.us/pop/sub-est01-09.htm') NODE <- html_element(PAGE ,"table") TBL <- html_table(NODE) ST <- which(toupper(TBL$X1)==toupper("Albany County")) END <- which(toupper(TBL$X1)==toupper("Balance of Weston County")) #More years than are pulled are listed to make more generic COLUMNS <- c(1,which(TBL[ST-4,] %in% 1970:2025)) NAMES <- TBL[4,COLUMNS][-1] TBL <- TBL[ST:END,COLUMNS ] colnames(TBL) <- c("County",NAMES) TBL <- pivot_longer(TBL,all_of(colnames(TBL)[-1]),names_to="Year",values_to="Population") %>% mutate(Year=as.integer(Year),Population=parse_number(Population)) TBL$County <- gsub(" "," ",gsub("\n","",gsub("\r","",TBL %>% pull(County)))) COUNTY_TBL <- TBL[grep("COUNTY",TBL %>% pull(County),ignore.case=TRUE),] COUNTY_TBL <-COUNTY_TBL[grep("Balance",COUNTY_TBL%>% pull(County),invert=TRUE,ignore.case=TRUE),] COUNTY_TBL$County <-gsub("_(pt.)","", gsub(" ","_",gsub(" County","",COUNTY_TBL$County))) CITY_TBL <- TBL[sort(c(grep("County",TBL %>% pull(County),invert=TRUE,ignore.case=TRUE),grep("Balance",TBL %>% pull(County),ignore.case=TRUE))),] CITY_TBL$County <- gsub(" ","_",gsub("Balance of","Unincorporated",gsub(" County","",gsub(" city","",gsub(" town","",CITY_TBL$County,ignore.case=TRUE),ignore.case=TRUE),ignore.case=TRUE),ignore.case=TRUE)) CITY_TBL <- CITY_TBL %>% rename("City"=County) CITY_POP <- rbind(CITY_TBL,CITY_POP) #Cleanup names CITY_POP$City <- gsub("LaGrange","La_Grange",CITY_POP$City) COUNTY_POP <- rbind(COUNTY_TBL,COUNTY_POP) ####################County and City Population DAta for 1990-2000 PAGE <- read_html('http://eadiv.state.wy.us/pop/c&sc90_00.htm') NODE <- html_element(PAGE ,"body") TEST <- read_table(html_text2(NODE),skip=21,skip_empty_rows=TRUE) TO_ADJ <- sum((!is.na(TEST[2,])))-11 ?read_table ?html_text2 ?html_text TBL <- html_table(NODE) TBL ST <- which(toupper(TBL$X1)==toupper("Albany Cnty")) END <- which(toupper(TBL$X1)==toupper("Balance of Weston County"))