library(tidyverse) library(fixest) source("Scripts/Functions.r") #source("Scripts/Load_Wyoming_Web_Data.r") DATA_TO_GATHER <- list() DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c("WYPOP","WY_POP",TRUE) DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c("WYNQGSP","WY_GDP",TRUE) DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c("MEHOINUSWYA646N","WY_MED_INCOME",TRUE) DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c("BUSAPPWNSAWY","WY_BUISNESS_APPLICATIONS",FALSE) DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c('ACTLISCOUWY','WY_HOUSES_FOR_SALE',FALSE) DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c('WYRVAC','WY_RENTAL_VACANCY_RATE',FALSE) DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c('WYBPPRIVSA','WY_PRIVATE_HOUSING',FALSE) #New Private Housing Units Authorized by Building Permits for Wyoming DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c('B03002006E056023','LN_FIVE_YEAR_POP',FALSE) DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c('GDPALL56023','LN_GDP',TRUE) DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c('WYLINC3POP','LN_POP',FALSE) DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c('LAUCN560230000000005','LN_EMPLOYMENT',FALSE) DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c('BPPRIV056023','LN_PRIVE_HOUSING',FALSE) DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c('ENU5602320510','LN_NUM_ESTABLISHMENTS',FALSE) DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c('GDPALL56041','UINTA_GDP',TRUE) DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c('WYUINT1POP','UINTA_POP',FALSE) DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c('WYSUBL5POP','SUBLETTE_POP',FALSE) DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c('WYSWEE7POP','SWEETWATER_POP',FALSE) DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c('WYTETO9POP','TETON_POP',FALSE) ##Idaho Counties DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c('IDBEAR7POP','BEAR_LAKE_POP',FALSE) DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c('IDCARI9POP','CARIBOU_POP',FALSE) DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c('IDBONN0POP','BONNEVILLE_POP',FALSE) ###US Population DATA_TO_GATHER[[length(DATA_TO_GATHER)+1]] <- c('POPTOTUSA647NWDB','US_POP',FALSE) for(x in 1:length(DATA_TO_GATHER)){ CURRENT <- DATA_TO_GATHER[[x]] if(CURRENT[3]){C_DATA <- CPI_ADJUST(FRED_GET(CURRENT[1],CURRENT[2]))}else{C_DATA <- FRED_GET(CURRENT[1],CURRENT[2])} if(x==1){RES <- C_DATA}else{RES <- RES %>% full_join(C_DATA)} rm(CURRENT,C_DATA) } DATA <- RES %>% mutate(US_POP=US_POP-WY_POP,WY_POP=WY_POP-LN_POP-UINTA_POP-SUBLETTE_POP-SWEETWATER_POP-TETON_POP) colnames(DATA) feols(log(LN_POP) ~log(US_POP)+log(UINTA_POP)+log(WY_POP)+log(SUBLETTE_POP)+log(SWEETWATER_POP)+log(TETON_POP)+log(BEAR_LAKE_POP)+log(CARIBOU_POP)+log(BONNEVILLE_POP)+YEAR,data=DATA) TS_DATA_ORIG <- DATA %>% select(YEAR,LN_POP,US_POP,WY_POP,UINTA_POP,SUBLETTE_POP,SWEETWATER_POP,TETON_POP,BEAR_LAKE_POP,CARIBOU_POP,BONNEVILLE_POP) %>% filter(!is.na(LN_POP)) %>% arrange(YEAR) %>% select(-YEAR) TS_DATA <- diff(log(ts(TS_DATA_ORIG,start=c(1970),end=c(2024),frequency=1))) library("forecast") library("vars") VARselect(TS_DATA,lag.max=4,type="const") VAR1 <- VAR(TS_DATA,p=3,type="const",season=NULL,exog=NULL) plot(irf(VAR1,response="LN_POP")) plot(forecast(VAR1,)) RES <- (predict(VAR1, n.ahead = 20, ci = 0.95)) names(RES ) names(RES$fcst) RES$fcst$LN_POP %>% as_tibble CURRENT_POP <- max(DATA$LN_POP,na.rm=TRUE) 0.0157*CURRENT_POP*1000 0.083*CURRENT_POP*1000 -0.0489*CURRENT_POP*1000 # View the forecasted values and confidence intervals print(forecast_results) # You can also plot the forecasts plot(forecast_results) install.packages("sparsegl") plot(VAR1) #Check a VAR it looks like lags on changes to Private industry could affect other variables #Idea check a SVAR placing limits on which shocks are first feols((LINC_POP)~(WY_POP)+log(LINC_PRIV_IND)+Year,data=DF) feols(log(1000*LINC_POP)~log(LINC_GDP)+log(LINC_PRIV_IND)+log(LINC_LABOR_FORCE)+log(LINC_PRIV_IND)+Year,DF) RES ggplot(data=RES) +geom_point(aes(x=YEAR,y=WY_POP),color="red")+geom_point(aes(x=YEAR,y=30*LN_POP),color="blue")+geom_point(aes(x=YEAR,y=LN_GDP/1700),color="black")+geom_point(aes(x=YEAR,y=LN_LABOR_FORCE/20),color="orange") itial information and data that will be required from Kemmerer-Diamondville Water & Wastewater Joint Powers Board includes names of key stakeholders that can be interviewed regarding future developments, new businesses, and business closures. version install.packages("pbkrtest") install.packages("bayesPop") update.packages(ask=FALSE ) library("bayesMig") help("bayesPop") library(bayesMig) ?mig.predict example(mig.predict) mig.predict(51) library("bayesPop") example(bayesMig) ?bayesMig