Population_Study/Scripts/2G_Single_Age_Sex_ARIMA_Models.r
2025-12-26 19:41:24 -07:00

117 lines
5.8 KiB
R

library(tidyverse)
library(forecast)
library(lmtest)
library(texreg)
####################
DATA_WOMEN <- readRDS("Data/Cleaned_Data/Mortality_Data/RDS/Mortality_Rate_and_Pandemic_Data_for_Regression.Rds") %>% filter(Sex=='Female')
DATA_MEN <- readRDS("Data/Cleaned_Data/Mortality_Data/RDS/Mortality_Rate_and_Pandemic_Data_for_Regression.Rds") %>% filter(Sex=='Male')
DATA_WOMEN_2016 <- readRDS("Data/Cleaned_Data/Mortality_Data/RDS/Mortality_Rate_and_Pandemic_Data_for_Regression.Rds") %>% filter(Sex=='Female',Year>=2016)
DATA_MEN_2016 <- readRDS("Data/Cleaned_Data/Mortality_Data/RDS/Mortality_Rate_and_Pandemic_Data_for_Regression.Rds") %>% filter(Sex=='Male',Year>=2016)
#Create time series data
ST_YEAR <- DATA_MEN %>% pull(Year) %>% min
TS_MEN_US <- DATA_MEN %>% select(Mort_Rate_US) %>% ts(start=ST_YEAR,frequency=1)
TS_MEN_US_2016 <- DATA_MEN_2016 %>% select(Mort_Rate_US) %>% ts(start=ST_YEAR,frequency=1)
TS_MEN_LIN <- DATA_MEN %>% select(Mort_Rate_Lincoln) %>% ts(start=ST_YEAR,frequency=1)
TS_MEN_LIN_2016 <- DATA_MEN_2016 %>% select(Mort_Rate_Lincoln) %>% ts(start=ST_YEAR,frequency=1)
TS_WOMEN_US <- DATA_WOMEN %>% select(Mort_Rate_US) %>% ts(start=ST_YEAR,frequency=1)
TS_WOMEN_US_2016 <- DATA_WOMEN_2016 %>% select(Mort_Rate_US) %>% ts(start=ST_YEAR,frequency=1)
TS_WOMEN_LIN <- DATA_WOMEN %>% select(Mort_Rate_Lincoln) %>% ts(start=ST_YEAR,frequency=1)
TS_WOMEN_LIN_2016 <- DATA_WOMEN_2016 %>% select(Mort_Rate_Lincoln) %>% ts(start=ST_YEAR,frequency=1)
TS_PANDEMIC <- DATA_MEN %>% select(WUPI,L_WUPI) %>% ts(start=ST_YEAR,frequency=1)
TS_PANDEMIC_2016 <- DATA_MEN_2016 %>% select(WUPI,L_WUPI) %>% ts(start=ST_YEAR,frequency=1)
FORECAST_XREG <- TS_PANDEMIC
FORECAST_XREG_2016 <- TS_PANDEMIC_2016
FORECAST_XREG[,] <- 0
FORECAST_XREG_2016[,] <- 0
MOD_US_WOMEN <- auto.arima(TS_WOMEN_US,lambda=0,biasadj=TRUE,xreg=TS_PANDEMIC)
MOD_US_WOMEN
MOD_US_WOMEN_2016 <- auto.arima(TS_WOMEN_US_2016,lambda=0,biasadj=TRUE,xreg=TS_PANDEMIC_2016)
#checkresiduals(MOD_US_WOMEN)
MEN_XREG <- cbind(TS_WOMEN_US,TS_PANDEMIC)
MEN_XREG_2016 <- cbind(TS_WOMEN_US_2016,TS_PANDEMIC_2016)
MOD_US_MEN <- auto.arima(TS_MEN_US,lambda=0,biasadj=TRUE,xreg=MEN_XREG)
MOD_US_MEN <- auto.arima(TS_MEN_US,lambda=0,biasadj=TRUE,xreg=MEN_XREG)
MOD_US_MEN_2016 <- auto.arima(TS_MEN_US_2016,lambda=0,biasadj=TRUE,xreg=MEN_XREG_2016)
#checkresiduals(MOD_US_MEN)
#plot(forecast(MOD_US_MEN,xreg=FORECAST_XREG))
#plot(forecast(MOD_US_WOMEN,xreg=FORECAST_XREG))
MOD_LIN_WOMEN <- auto.arima(TS_WOMEN_LIN,biasadj=TRUE,xreg=TS_WOMEN_US)
MOD_LIN_WOMEN_2016 <- auto.arima(TS_WOMEN_LIN_2016,biasadj=TRUE,xreg=TS_WOMEN_US_2016)
MOD_LIN_MEN <- auto.arima(TS_MEN_LIN,biasadj=TRUE,xreg=TS_MEN_US)
MOD_LIN_MEN_2016 <- auto.arima(TS_MEN_LIN_2016,biasadj=TRUE,xreg=TS_MEN_US_2016)
#checkresiduals(MOD_LIN_MEN)
#coeftest(MOD_LIN_WOMEN)
###Create Location to save models
if(!exists("SAVE_LOC_MOD")){SAVE_LOC_MOD <-"./Data/Intermediate_Inputs/Age_Mortality_ARIMA_Models/"}
dir.create(SAVE_LOC_MOD, recursive = TRUE, showWarnings = FALSE)
saveRDS(MOD_US_WOMEN,paste0(SAVE_LOC_MOD,"ARIMA_US_Women_Mortality_by_Age.Rds"))
saveRDS(MOD_US_MEN,paste0(SAVE_LOC_MOD,"ARIMA_US_Men_Mortality_by_Age.Rds"))
saveRDS(MOD_LIN_WOMEN,paste0(SAVE_LOC_MOD,"ARIMA_Lincoln_Women_Mortality_by_Age.Rds"))
saveRDS(MOD_LIN_MEN,paste0(SAVE_LOC_MOD,"ARIMA_Lincoln_Men_Mortality_by_Age.Rds"))
####2016 censured data for validity check
saveRDS(MOD_US_WOMEN_2016,paste0(SAVE_LOC_MOD,"ARIMA_US_Women_Mortality_by_Age_2016.Rds"))
saveRDS(MOD_US_MEN_2016,paste0(SAVE_LOC_MOD,"ARIMA_US_Men_Mortality_by_Age_2016.Rds"))
saveRDS(MOD_LIN_WOMEN_2016,paste0(SAVE_LOC_MOD,"ARIMA_Lincoln_Women_Mortality_by_Age_2016.Rds"))
saveRDS(MOD_LIN_MEN_2016,paste0(SAVE_LOC_MOD,"ARIMA_Lincoln_Men_Mortality_by_Age_2016.Rds"))
###Mortality ARIMA results save
if(!exists("SAVE_LOC_ARIMA_FIGURES")){SAVE_LOC_ARIMA_FIGURES <-"./Results/Mortality_ARIMA/"}
dir.create(SAVE_LOC_ARIMA_FIGURES, recursive = TRUE, showWarnings = FALSE)
################Figures
png(paste0(SAVE_LOC_ARIMA_FIGURES,"US_Men_Mortality_ARIMA_Residual_Checks.png"), res = 600, height = 12, width=16, units = "in")
checkresiduals(MOD_US_MEN)
dev.off()
png(paste0(SAVE_LOC_ARIMA_FIGURES,"US_Women_Mortality_ARIMA_Residual_Checks.png"), res = 600, height = 12, width=16, units = "in")
checkresiduals(MOD_US_WOMEN)
dev.off()
png(paste0(SAVE_LOC_ARIMA_FIGURES,"Lincoln_County_Men_Mortality_ARIMA_Residual_Checks.png"), res = 600, height = 12, width=16, units = "in")
checkresiduals(MOD_LIN_MEN)
dev.off()
png(paste0(SAVE_LOC_ARIMA_FIGURES,"Lincoln_County_Women_Mortality_ARIMA_Residual_Checks.png"), res = 600, height = 12, width=16, units = "in")
checkresiduals(MOD_LIN_WOMEN)
dev.off()
##################Tables
DICT <- list("ar1"="Autoregressive (1 Year)","ar2"="Autoregressive (2 Year)","ma1"="Moving Average (1 Year)","ma2"="Moving Average (2 Year)","WUPI"="Pandemic Index","L_WUPI"="Pandemic Index (1 Year)","intercept"="Average Mortality","Women Mortality Rate"="TS\\_WOMEN\\_US" )
NOTE <- list("The US Mortality rate variable is tied to the sex of the given model.","Lambda set to zero for all model which log-transforms the results.")
FILE_NAME <- "Mortality_ARIMA_Tables"
REG_TABLE_LOC <- paste0(SAVE_LOC_ARIMA_FIGURES,FILE_NAME,".tex")
sink(REG_TABLE_LOC)
cat("\\documentclass[border=0pt]{article}","\n","\\pagestyle{empty}","\n","\\usepackage{booktabs,dcolumn}","\n","\\begin{document}")
texreg(l=list(MOD_US_WOMEN,MOD_US_MEN,MOD_LIN_WOMEN,MOD_LIN_MEN),digits=4,custom.model.names=c("\\textbf{U.S. Women}","\\textbf{U.S. Men}","\\textbf{Lincoln Women}","\\textbf{Lincoln Men}"),table=FALSE,use.packages=FALSE,booktabs=TRUE,dcolumn=TRUE,caption.above=TRUE)
cat("\n","\\end{document}")
sink()
system(paste0("pdflatex ",REG_TABLE_LOC))
system(paste0("pdfcrop --margins '5 5 5 5' ",FILE_NAME,".pdf ",SAVE_LOC_ARIMA_FIGURES,FILE_NAME,".pdf"))
file.remove(list.files(pattern=FILE_NAME))