Population_Study/Demographic_Split.r
2025-11-05 16:20:20 -07:00

129 lines
11 KiB
R

library(tidyverse)
library(scales) #For a pretty population Pyramid
ACS_FILE_LOC <- "Data/Cleaned_Data/ACS_Census_Demographic_Data.Rds"
ACS_YEAR <- 2023 #Year of the ACS data
if(!file.exists(ACS_FILE_LOC)){source("Scripts/Load_ACS_Census_Data.r")}else{AGE_DATA <- readRDS(ACS_FILE_LOC)}
LIN_DEMOGRAPHICS <- readRDS("Data/Cleaned_Data/Lincoln_Demographic_Data.Rds") %>% filter(Year==ACS_YEAR)
LIN_DEMOGRAPHICS
GET_INTIAL_DATA_SUMMARY <- function(DEMO_DATA,FILE_SAVE_NAME,ST_POP=NA,Area=NA,ST_YEAR=NA,SAVE_DIR='Data/Cleaned_Data/Intiate_Simulation/'){
ST_BIRTH <- round(sum((DEMO_DATA%>% filter(Age==0))[4:5]))
ST_BIRTH_TWO_PREV <- round(sum((DEMO_DATA%>% filter(Age==1))[4:5]))
if(is.na(ST_YEAR)){ST_YEAR=max(POP_DATA$Year)}
if(is.na(ST_POP)){
if(Area=='Kemmerer'){
ST_POP<- POP_DATA %>% filter(City %in% c('Kemmerer','Diamondville'),Year==ST_YEAR) %>% mutate(Population=as.numeric(Population)) %>% pull(Population) %>% sum()
} else if(Area=='Other Lincoln'){
ST_POP_KEM<- POP_DATA %>% filter(City %in% c('Kemmerer','Diamondville'),Year==ST_YEAR) %>% mutate(Population=as.numeric(Population)) %>% pull(Population) %>% sum()
ST_POP_LIN <- readRDS("Data/Cleaned_Data/Wyoming_County_Population.Rds") %>% filter(Year==ST_YEAR,County==Area) %>% pull(Population) #Grab the year of data for the county
ST_POP <- ST_POP_LIN-ST_POP_KEM
} else{
ST_POP <- readRDS("Data/Cleaned_Data/Wyoming_County_Population.Rds") %>% filter(Year==ST_YEAR,County==Area) %>% pull(Population) #Grab the year of data for the county
}
}
INTIATE_DATA <- DEMO_DATA %>% mutate(Male_Window=Age>=18 & Age<=30,Female_Window=Age>=18 & Age<=28) %>% group_by(County,Year) %>% summarize(Female_Birth_Group=sum(Num_Female*Female_Window),Male_Birth_Group=sum(Num_Male*Male_Window),Min_Birth_Group=ifelse(Female_Birth_Group<Male_Birth_Group,Female_Birth_Group,Male_Birth_Group),PREV_BIRTH=ST_BIRTH,PREV_TWO_BIRTH=ST_BIRTH_TWO_PREV,Population=ST_POP) %>% mutate(Births=NA,Deaths=NA,Migration=NA) %>% select(Year,County,Population,Births,Deaths,Migration,Min_Birth_Group,PREV_BIRTH,PREV_TWO_BIRTH) %>% ungroup
saveRDS(INTIATE_DATA ,paste0(SAVE_DIR,FILE_SAVE_NAME,".Rds"))
write_csv(INTIATE_DATA ,paste0(SAVE_DIR,FILE_SAVE_NAME,".csv"))
return(INTIATE_DATA)
GET_INTIAL_DATA_SUMMARY(LIN_DEMOGRAPHICS,"test")
for(i in 1:nrow(AGE_DATA)){
if(i==1 & exists("RES")){rm(RES)}
C_DEMO <- AGE_DATA[i,]
C_SEX <- C_DEMO$Sex
if(C_DEMO$Min_Age==C_DEMO$Max_Age){C_AGE_YEARLY_DATA <- LIN_DEMOGRAPHICS %>% filter(Age==C_DEMO$Min_Age)}else{
C_AGE_YEARLY_DATA <- LIN_DEMOGRAPHICS %>% filter(Age>=C_DEMO$Min_Age,Age<=C_DEMO$Max_Age)
}
#Extract only the current sex being applied
if(C_SEX=='Female'){C_AGE_YEARLY_DATA <- C_AGE_YEARLY_DATA %>% select(Age,Num_Female) %>% rename(POP=Num_Female)}else{C_AGE_YEARLY_DATA <- C_AGE_YEARLY_DATA %>% select(Age,Num_Male) %>% rename(POP=Num_Male)}
C_AGE_YEARLY_DATA$Sex <- C_SEX
C_AGE_YEARLY_DATA$PER <- C_AGE_YEARLY_DATA$POP/sum(C_AGE_YEARLY_DATA$POP)
C_RES <- C_AGE_YEARLY_DATA%>% left_join(C_DEMO) %>% mutate(Population=PER*Population) %>% select(Age,Sex,IN_KEM,Population)
if(i==1){RES <- C_RES}else{RES <- rbind(RES,C_RES)}
}
RES <- RES %>% group_by(IN_KEM) %>% mutate(Per_Pop=Population/sum(Population)) %>% mutate(Region=ifelse(IN_KEM,'Kemmerere & Diamondville','Rest of the County')) %>% select(-Population) %>% ungroup
CURRENT_KEM_POP <- readRDS("Data/Cleaned_Data/Wyoming_City_Population.Rds") %>% filter(City %in% c('Kemmerer','Diamondville'),Year==max(Year)) %>% mutate(Population=as.numeric(Population)) %>% pull(Population) %>% sum()
KEM_DEMOGRAPHICS <- RES %>% filter(IN_KEM==1) %>% select(Age,Sex,Per_Pop) %>% mutate(Year=ACS_YEAR+1,County='Kemmerer',Population=round(Per_Pop*CURRENT_KEM_POP) ) %>% select(-Per_Pop) %>% pivot_wider(values_from=Population,names_from=c(Sex),names_prefix="Num_") %>% select(County,Year,Age,Num_Male,Num_Female)
saveRDS(KEM_DEMOGRAPHICS,"Data/Cleaned_Data/Intiate_Simulation/Kemmerer_Demographic_Data.Rds")
write_csv(KEM_DEMOGRAPHICS,"Data/Cleaned_Data/Intiate_Simulation/Kemmerer_Demographic_Data.csv")
##Create a simplfied summary of the Kemmerer/Diamondville population estimates, to start the Monte Carlo
ST_BIRTH_KEM <- round(sum((KEM_DEMOGRAPHICS%>% filter(Age==0))[4:5]))
ST_BIRTH_TWO_PREV_KEM <- round(sum((KEM_DEMOGRAPHICS%>% filter(Age==1))[4:5]))
INTIATE_KEMMER <- KEM_DEMOGRAPHICS %>% mutate(Male_Window=Age>=18 & Age<=30,Female_Window=Age>=18 & Age<=28) %>% group_by(County,Year) %>% summarize(Female_Birth_Group=sum(Num_Female*Female_Window),Male_Birth_Group=sum(Num_Male*Male_Window),Min_Birth_Group=ifelse(Female_Birth_Group<Male_Birth_Group,Female_Birth_Group,Male_Birth_Group),PREV_BIRTH=ST_BIRTH_KEM,PREV_TWO_BIRTH=ST_BIRTH_TWO_PREV_KEM,Population=CURRENT_KEM_POP) %>% mutate(Births=NA,Deaths=NA,Migration=NA) %>% select(Year,County,Population,Births,Deaths,Migration,Min_Birth_Group,PREV_BIRTH,PREV_TWO_BIRTH) %>% ungroup
saveRDS(INTIATE_KEMMER ,"Data/Cleaned_Data/Intiate_Simulation/Kemmerer_Summary_Start_Data.Rds")
write_csv(INTIATE_KEMMER ,"Data/Cleaned_Data/Intiate_Simulation/Kemmerer_Summary_Start_Data.csv")
###Create data sets that contain all people not in Loncoln but not Kemmerer or Diamondville, for a seperate comparison run
LIN_DEMOGRAPHICS_RECENT <- readRDS("Data/Cleaned_Data/Lincoln_Demographic_Data.Rds") %>% filter(Year==max(Year)) #Grab the most recent year of data for all of the county
LIN_OTHER_DEMOGRAPHICS <- LIN_DEMOGRAPHICS_RECENT %>% left_join(KEM_DEMOGRAPHICS %>% select(-County,ADJ_MALE=Num_Male,ADJ_FEMALE=Num_Female)) %>% mutate(Num_Male=Num_Male-ADJ_MALE,Num_Female=Num_Female-ADJ_FEMALE) %>% select(-ADJ_MALE,-ADJ_FEMALE) %>% ungroup#Deduct the populaiton estimates of Kemmerer to create a "Other Lincoln" data set
#Data sets needed to start a simulation for all but Kemmerer/Diamondville but in the county
ST_BIRTH_OTHER <- round(sum((LIN_OTHER_DEMOGRAPHICS%>% filter(Age==0))[4:5]))
ST_BIRTH_TWO_PREV_OTHER <- round(sum((LIN_OTHER_DEMOGRAPHICS%>% filter(Age==1))[4:5]))
INTIATE_OTHER <- LIN_OTHER_DEMOGRAPHICS %>% mutate(Male_Window=Age>=18 & Age<=30,Female_Window=Age>=18 & Age<=28) %>% group_by(County,Year) %>% summarize(Female_Birth_Group=sum(Num_Female*Female_Window),Male_Birth_Group=sum(Num_Male*Male_Window),Min_Birth_Group=ifelse(Female_Birth_Group<Male_Birth_Group,Female_Birth_Group,Male_Birth_Group),PREV_BIRTH=ST_BIRTH_OTHER,PREV_TWO_BIRTH=ST_BIRTH_TWO_PREV_OTHER,Population=CURRENT_KEM_POP) %>% mutate(Births=NA,Deaths=NA,Migration=NA) %>% select(Year,County,Population,Births,Deaths,Migration,Min_Birth_Group,PREV_BIRTH,PREV_TWO_BIRTH) %>% ungroup
#Save detailed demographics for start of analysis
saveRDS(LIN_OTHER_DEMOGRAPHICS,"Data/Cleaned_Data/Intiate_Simulation/Lincoln_Rest_of_County_Demographic_Data.Rds")
write_csv(LIN_OTHER_DEMOGRAPHICS,"Data/Cleaned_Data/Intiate_Simulation/Lincoln_Rest_of_County_Demographic_Data.csv")
#Save summary information for start of analysis
saveRDS(INTIATE_OTHER ,"Data/Cleaned_Data/Intiate_Simulation/Lincoln_Rest_of_County_Summary_Start_Data.Rds")
write_csv(INTIATE_OTHER ,"Data/Cleaned_Data/Intiate_Simulation/Lincoln_Rest_of_County_Summary_Start_Data.csv")
#Data sets needed to start a simulation for all the county (includes Kemmerer)
ST_BIRTH_ALL <- round(sum((LIN_DEMOGRAPHICS_RECENT %>% filter(Age==0))[4:5]))
ST_BIRTH_TWO_PREV_ALL <- round(sum((LIN_DEMOGRAPHICS_RECENT %>% filter(Age==1))[4:5]))
INTIATE_ALL <- LIN_DEMOGRAPHICS_RECENT %>% mutate(Male_Window=Age>=18 & Age<=30,Female_Window=Age>=18 & Age<=28) %>% group_by(County,Year) %>% summarize(Female_Birth_Group=sum(Num_Female*Female_Window),Male_Birth_Group=sum(Num_Male*Male_Window),Min_Birth_Group=ifelse(Female_Birth_Group<Male_Birth_Group,Female_Birth_Group,Male_Birth_Group),PREV_BIRTH=ST_BIRTH_ALL,PREV_TWO_BIRTH=ST_BIRTH_TWO_PREV_ALL,Population=CURRENT_KEM_POP) %>% mutate(Births=NA,Deaths=NA,Migration=NA) %>% select(Year,County,Population,Births,Deaths,Migration,Min_Birth_Group,PREV_BIRTH,PREV_TWO_BIRTH) %>% ungroup
#Save detailed demographics for start of analysis
saveRDS(LIN_DEMOGRAPHICS_RECENT,"Data/Cleaned_Data/Intiate_Simulation/Lincoln_All_County_Demographic_Data.Rds")
write_csv(LIN_DEMOGRAPHICS_RECENT,"Data/Cleaned_Data/Intiate_Simulation/Lincoln_All_County_Demographic_Data.csv")
#Save summary information for start of analysis
saveRDS(INTIATE_ALL ,"Data/Cleaned_Data/Intiate_Simulation/Lincoln_All_County_Summary_Start_Data.Rds")
write_csv(INTIATE_ALL ,"Data/Cleaned_Data/Intiate_Simulation/Lincoln_All_County_Summary_Start_Data.csv")
#sum(LIN_OTHER_DEMOGRAPHICS[,4:5] )+sum(KEM_DEMOGRAPHICS[,4:5])
###Make a population Pyramid Graph
PY_KEM_DATA <- KEM_DEMOGRAPHICS %>% mutate(County='Kemmerer') %>% pivot_longer(cols=c(Num_Male,Num_Female),names_to="Sex",values_to="Population") %>% mutate(Sex=ifelse(Sex=='Num_Male','Male','Female'))
PY_LN_DATA <- readRDS("Data/Cleaned_Data/Wyoming_County_Demographic_Data.Rds") %>% filter(County=='Lincoln',Year==max(Year))%>% pivot_longer(cols=c(Num_Male,Num_Female),names_to="Sex",values_to="Population") %>% mutate(Sex=ifelse(Sex=='Num_Male','Male','Female'))
#Population=ifelse(Sex=='Male',-Population,Population)
#Remove the Kemmerer Population estimate from Lincoln county
PY_LN_DATA <- PY_LN_DATA %>% left_join(PY_KEM_DATA %>% rename(POP_SHIFT=Population) %>% select(-County)) %>% mutate(Population=Population-POP_SHIFT) %>% select(-POP_SHIFT)
LN_ONLY_POP <- sum(PY_LN_DATA$Population)
PY_LN_DATA$Percent <- PY_LN_DATA$Population/LN_ONLY_POP
#Find percent Kemmerer (nod adjustment needed)
KEM_ONLY_POP <- sum(PY_KEM_DATA$Population)
PY_KEM_DATA$Percent <- PY_KEM_DATA$Population/KEM_ONLY_POP
PY_DATA <- rbind(PY_LN_DATA,PY_KEM_DATA) %>% mutate(Population=ifelse(County=='Kemmerer',Population,-Population),'Percent of Population'=ifelse(County=='Kemmerer',Percent,-Percent),Age_Numeric=Age,Age=as.character(Age))
PY_DATA[PY_DATA$Age=='85',"Age"] <- ">84"
ORD <- PY_DATA[,c("Age_Numeric","Age")] %>% unique %>% arrange(Age_Numeric) %>% pull(Age)
PY_DATA$Age <- factor(PY_DATA$Age,levels=ORD)
RANGE <- c(pretty(range(PY_DATA$`Percent of Population`),n=4))
LAB <- percent(abs(RANGE),accuracy=0.1 )
PY_DATA
PY_DATA <- PY_DATA %>% mutate(Region=ifelse(County=='Lincoln',"Rest of Lincoln County","Kemmerer & Diamondville"))
PY_DATA$Sex <- ifelse(PY_DATA$Sex=='Male','Men','Women')
ORDER <- PY_DATA$Sex %>% unique
PY_DATA$Sex <- factor(PY_DATA$Sex,levels=ORDER)
POP_PYRAMID <- ggplot(PY_DATA,aes(y=factor(Age),x=`Percent of Population`,fill=Region))+geom_col() +scale_x_continuous(breaks = RANGE,labels = LAB)+facet_grid(~Sex)+ylab("Age")+ theme_bw()+ theme(axis.text = element_text(size = 10),legend.position = "top",legend.text=element_text(size=14),legend.title = element_blank(),axis.title=element_text(size=18),strip.text = element_text(size = 14))
dir.create(FIG_DIR ,showWarnings=FALSE)
png(paste0(FIG_DIR,"/Population_Pyramid.png"), res = 600, width = 8.27, height = 11, units = "in")
POP_PYRAMID
dev.off()