29 lines
1003 B
R
29 lines
1003 B
R
library(rvest)
|
|
#Data found on the page http://eadiv.state.wy.us/pop/
|
|
PAGE <- read_html("http://eadiv.state.wy.us/pop/BirthDeathMig.htm")
|
|
NODE <- html_element(PAGE ,"table")
|
|
TBL <- html_table(NODE)
|
|
|
|
ST <- which(toupper(TBL$X1)=="ALBANY")
|
|
END <- which(toupper(TBL$X1)=="TOTAL")
|
|
TYPES <- TBL[ST-2,1]
|
|
|
|
ST_YEAR <- 1971
|
|
ALL_DATA <- list()
|
|
TBL <- TBL[,c(1,which(!is.na(as.numeric(TBL[ST[1],]))))]
|
|
TBL <- TBL[,-ncol(TBL)]
|
|
colnames(TBL) <- c("County",(ST_YEAR:(ST_YEAR+ncol(TBL)-1)))
|
|
TBL$Type <- NA
|
|
for(i in 1:length(ST)){
|
|
TBL[ST[i]:END[i],"Type"]<- as.character(TYPES[i,1])
|
|
}
|
|
TBL[ST[2]:END[2],"Type"] <- as.character(TYPES[2,1])
|
|
TBL$Type
|
|
TBL <- TBL %>% filter(!is.na(Type)) %>% select(County,Type,everything())
|
|
GROUP <- colnames(TBL)[-1:-2]
|
|
Data <- pivot_longer(TBL,all_of(GROUP),names_to="Year",values_to="Pop_Change")
|
|
Data$County <- ifelse(toupper(Data$County)=="TOTAL","Wyoming",Data$County)
|
|
WY_COUNTY_DATA_SET <- pivot_wider(Data,names_from=Type,values_from=Pop_Change)
|
|
colnames(Data)[5] <-"Migration"
|
|
|